ﻻ يوجد ملخص باللغة العربية
We present the results of a lattice QCD calculation of the scalar and vector form factors for the unphysical $B_stoeta_s$ decay, over the full physical range of $q^2$. This is a useful testing ground both for lattice QCD and for our wider understanding of the behaviour of form factors. Calculations were performed using the highly improved staggered quark (HISQ) action on $N_f = 2 + 1 + 1$ gluon ensembles generated by the MILC Collaboration with an improved gluon action and HISQ sea quarks. We use three lattice spacings and a range of heavy quark masses from that of charm to bottom, all in the HISQ formalism. This permits an extrapolation in the heavy quark mass and lattice spacing to the physical point and nonperturbative renormalisation of the vector matrix element on the lattice. We find results in good agreement with previous work using nonrelativistic QCD $b$ quarks and with reduced errors at low $q^2$, supporting the effectiveness of our heavy HISQ technique as a method for calculating form factors involving heavy quarks. A comparison with results for other decays related by SU(3) flavour symmetry shows that the impact of changing the light daughter quark is substantial but changing the spectator quark has very little effect. We also map out form factor shape parameters as a function of heavy quark mass and compare to heavy quark effective theory expectations for mass scaling at low and high recoil. This work represents an important step in the progression from previous work on heavy-to-heavy decays ($bto c$) to the numerically more challenging heavy-to-light decays.
The semileptonic process, B --> pi l u, is studied via full QCD Lattice simulations. We use unquenched gauge configurations generated by the MILC collaboration. These include the effect of vacuum polarization from three quark flavors: the $s$ quark
Lattice QCD can provide a direct determination of meson electromagnetic form factors, making predictions for upcoming experiments at Jefferson Lab. The form factors are a reflection of the bound-state nature of the meson and so these calculations giv
We calculate, for the first time using unquenched lattice QCD, form factors for the rare decay B -> Kll in and beyond the Standard Model. Our lattice QCD calculation utilizes a nonrelativistic QCD formulation for the b valence quarks, the highly impr
Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small sp
We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action th