ترغب بنشر مسار تعليمي؟ اضغط هنا

$B_s to K ell u$ form factors from lattice QCD

191   0   0.0 ( 0 )
 نشر من قبل Chris Bouchard
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first lattice QCD calculation of the form factors for the standard model tree-level decay $B_sto K ell u$. In combination with future measurement, this calculation will provide an alternative exclusive semileptonic determination of $|V_{ub}|$. We compare our results with previous model calculations, make predictions for differential decay rates and branching fractions, and predict the ratio of differential branching fractions between $B_sto Ktau u$ and $B_sto Kmu u$. We also present standard model predictions for differential decay rate forward-backward asymmetries, polarization fractions, and calculate potentially useful ratios of $B_sto K$ form factors with those of the fictitious $B_stoeta_s$ decay. Our lattice simulations utilize NRQCD $b$ and HISQ light quarks on a subset of the MILC Collaborations $2+1$ asqtad gauge configurations, including two lattice spacings and a range of light quark masses.



قيم البحث

اقرأ أيضاً

Semi-leptonic $B_s to K ell u$ and $B_s to D_s ell u$ decays provide an alternative $b$-decay channel to determine the CKM matrix elements $|V_{ub}|$ and $|V_{cb}|$ or to obtain $R$-ratios to investigate lepton flavor universality violations. In ad dition, these decays may shed further light on the discrepancies seen in the analysis of inclusive vs. exclusive decays. Using the nonperturbative methods of lattice QCD, theoretical results are obtained with good precision and full control over systematic uncertainties. This talk will highlight ongoing efforts of the $B$-physics program by the RBC-UKQCD collaboration.
Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors $f_0$ and $f_+$ for the semileptonic $B_s rightarrow K ell u$ decay. A total of six ensembles with lattice spacing from $approx0.12$ to 0.06 fm are being use d. At the coarsest and finest lattice spacings, the light quark mass $m_l$ is one-tenth the strange quark mass $m_s$. At the intermediate lattice spacing, the ratio $m_l/m_s$ ranges from 0.05 to 0.2. The valence $b$ quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element $|V_{ub}|$.
We present the first lattice-QCD determination of the form factors describing the semileptonic decays $Lambda_b to Lambda_c^*(2595)ell^-bar{ u}$ and $Lambda_b to Lambda_c^*(2625)ell^-bar{ u}$, where the $Lambda_c^*(2595)$ and $Lambda_c^*(2625)$ are t he lightest charm baryons with $J^P=frac12^-$ and $J^P=frac32^-$, respectively. These decay modes provide new opportunities to test lepton flavor universality and also play an important role in global analyses of the strong interactions in $bto c$ semileptonic decays. We determine the full set of vector, axial vector, and tensor form factors for both decays, but only in a small kinematic region near the zero-recoil point. The lattice calculation uses three different ensembles of gauge-field configurations with $2+1$ flavors of domain-wall fermions, and we perform extrapolations of the form factors to the continuum limit and physical pion mass. We present Standard-Model predictions for the differential decay rates and angular observables. In the kinematic region considered, the differential decay rate for the $frac12^-$ final state is found to be approximately 2.5 times larger than the rate for the $frac32^-$ final state. We also test the compatibility of our form-factor results with zero-recoil sum rules.
We update the lattice calculation of the $Btopi$ semileptonic form factors, which have important applications to the CKM matrix element $|V_{ub}|$ and the $Btopiell^+ell^-$ rare decay. We use MILC asqtad ensembles with $N_f=2+1$ sea quarks and over a range of lattice spacings $a approx 0.045$--$0.12$ fm. We perform a combined chiral and continuum extrapolation of our lattice data using SU(2) staggered chiral perturbation theory in the hard pion limit. To extend the results for the form factors to the full kinematic range, we take a functional approach to parameterize the form factors using the Bourrely-Caprini-Lellouch formalism in a model-independent way. Our analysis is still blinded with an unknown off-set factor which will be disclosed when we present the final results.
115 - T. Kaneko , Y. Aoki , G. Bailas 2019
We report on our calculation of the B to D^(*) ell u form factors in 2+1 flavor lattice QCD. The Mobius domain-wall action is employed for light, strange, charm and bottom quarks. At lattice cutoffs 1/a sim 2.4, 3.6 and 4.5 GeV, we simulate bottom q uark masses up to 0.7/a to control discretization errors. The pion mass is as low as 230 MeV. We extrapolate the form factors to the continuum limit and physical quark masses, and make a comparison with recent phenomenological analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا