ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Halpha activity at periastron in the young and massive spectroscopic binary HD200775

91   0   0.0 ( 0 )
 نشر من قبل Myriam Benisty
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Young close binaries clear central cavities in their surrounding circumbinary disk from which the stars can still accrete material. This process takes place within the very first astronomical units, and is still not well constrained as the observational evidence has been gathered, until now, only by means of spectroscopy. The young object HD200775 (MWC361) is a massive spectroscopic binary (separation of ~15.9mas, ~5.0~AU), with uncertain classification (early/late Be), that shows a strong and variable Halpha emission. We aim to study the mechanisms that produce the Halpha line at the AU-scale. Combining the radial velocity measurements and astrometric data available in the literature, we determined new orbital parameters. With the VEGA instrument on the CHARA array, we spatially and spectrally resolved the Halpha emission of HD200775, at low and medium spectral resolutions (R~1600 and 5000) over a full orbital period (~3.6 years). We observe that the Halpha equivalent width varies with the orbital phase, and increases close to periastron, as expected from theoretical models that predict an increase of the mass transfer from the circumbinary disk to the primary disk. In addition, using spectral visibilities and differential phases, we find marginal variations of the typical extent of the Halpha emission (at 1 to 2-sigma level) and location (at 1 to 5-sigma level). The spatial extent of the Halpha emission, as probed by a Gaussian FWHM, is minimum at the ascending node (0.67+/-0.20 mas, i.e., 0.22+/-0.06 AU), and more than doubles at periastron. In addition, the Gaussian photocenter is slightly displaced in the direction opposite to the secondary, ruling out the scenario in which all or most of the Halpha emission is due to accretion onto the secondary. These findings, together with the wide Halpha line profile, may be due to a non-spherical wind enhanced at periastron.

قيم البحث

اقرأ أيضاً

Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. The system has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability rema ins poorly understood. Aims. We study variability of GX 1+4 on long time-scale in X-ray and optical bands. Methods. The presented X-ray observations are from INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. The optical observations are from INTEGRAL Optical Monitoring Camera. Results. The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by ~50-70d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum, which confirms the 1161d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.
We present high resolution near-infrared spectropolarimetric observations using the SPIRou instrument at CFHT during a transit of the recently detected young planet AU Mic b, with supporting spectroscopic data from iSHELL at IRTF. We detect Zeeman si gnatures in the Stokes V profiles, and measure a mean longitudinal magnetic field of $overline{B}_ell=46.3pm0.7$~G. Rotationally modulated magnetic spots likely cause long-term variations of the field with a slope of $d{B_ell}/dt=-108.7pm7.7$~G/d. We apply the cross-correlation technique to measure line profiles and obtain radial velocities through CCF template matching. We find an empirical linear relationship between radial velocity and $B_ell$, which allows us to estimate the radial velocity variations which stellar activity induces through rotational modulation of spots for the five hours of continuous monitoring of AU Mic with SPIRou. We model the corrected radial velocities for the classical Rossiter-McLaughlin effect, using MCMC to sample the posterior distribution of the model parameters. This analysis shows that the orbit of AU Mic b is prograde and aligned with the stellar rotation axis with a sky-projected spin-orbit obliquity of $lambda=0^{+18}_{-15}$ degrees. The aligned orbit of AU Mic b indicates that it formed in the protoplanetary disk that evolved to the current debris disk around AU Mic.
41 - Artie P. Hatzes 2015
Radial velocity measurements showed evidence that the M dwarf GL 581 might host a planet, GL 581d, in the so-called habitable zone of the star. A study of Halpha in GL 581 demonstrated that changes in this activity indicator correlated with radial ve locity variations attributed to GL 581d. An exopplanet that was important for studies of planet habitability may be an artifact of stellar activity. Previous investigations analyzing the same activity data have reached different conclusions regarding the existence of GL 581d. We therfore investigated the Halpha variations for GL 581 to assess the nature of the radial velocity variations attributed to the possible planet GL 581d. We performed a Fourier analysis of the published Halpha measurements for GL 581d using a so-called pre-whitening process to isolate the variations at the orbital frequency of GL 581d. The frequency analysis yields five significant frequencies, one of which is associated with the 66.7 d orbital period of the presumed planet Gl 581d. The Halpha variations at this period show sine-like variations that are 180 degrees out-of-phase with the radial velocity variations of GL 581d. This is seen in thefull data set that spans almost 7 years, as well as a subset of the data that had good temporal sampling over 230 days. Furthermore, No significant temporal variations are found in the ratio of the amplitudes of the Halpha index and radial velocity variations. This provides additional evidence that the radial velocity signal attributed to GL 581d is in fact due to stellar activity.
211 - B. Stecklum 2017
Methanol and water masers indicate young stellar objects. They often exhibit flares, and a fraction shows periodic activity. Several mechanisms might explain this behavior but the lack of concurrent infrared (IR) data complicates to identify the caus e. Recently, 6.7 GHz methanol maser flares were observed, triggered by accretion bursts of high-mass YSOs which confirmed the IR-pumping of these masers. This suggests that regular IR changes might lead to maser periodicity. Hence, we scrutinized space-based IR imaging of YSOs associated with periodic methanol masers. We succeeded to extract the IR light curve from NEOWISE data for the intermediate mass YSO G107.298+5.639. Thus, for the first time a relationship between the maser and IR variability could be established. While the IR light curve shows the same period of ~34.6 days as the masers, its shape is distinct from that of the maser flares. Possible reasons for the IR periodicity are discussed.
We report our analyses of the multi-epoch (2015-2017) ALMA archival data of the Class II binary system XZ Tau at Bands 3, 4 and 6. The millimeter dust continuum images show compact, unresolved (r <~ 15 au) circumstellar disks (CSDs) around the indivi dual binary stars; XZ Tau A and B, with a projected separation of ~ 39 au. The 12CO (2-1) emission associated with those CSDs traces the Keplerian rotations, whose rotational axes are misaligned with each other (P.A. ~ -5 deg for XZ Tau A and ~ 130 deg for XZ Tau B). The similar systemic velocities of the two CSDs (VLSR ~ 6.0 km s-1) suggest that the orbital plane of the binary stars is close to the plane of the sky. From the multi-epoch ALMA data, we have also identified the relative orbital motion of the binary. Along with the previous NIR data, we found that the elliptical orbit (e = 0.742+0.025-0.034, a = 0.172+0.002-0.003, and {omega} = -54.2+2.0-4.7 deg) is preferable to the circular orbit. Our results suggest that the two CSDs and the orbital plane of the XZ Tau system are all misaligned with each other, and possible mechanisms to produce such a configuration are discussed. Our analyses of the multi-epoch ALMA archival data demonstrate the feasibility of time-domain science with ALMA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا