ترغب بنشر مسار تعليمي؟ اضغط هنا

Misaligned Circumstellar Disks and Orbital Motion of the Young Binary XZ Tau

174   0   0.0 ( 0 )
 نشر من قبل Takanori Ichikawa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report our analyses of the multi-epoch (2015-2017) ALMA archival data of the Class II binary system XZ Tau at Bands 3, 4 and 6. The millimeter dust continuum images show compact, unresolved (r <~ 15 au) circumstellar disks (CSDs) around the individual binary stars; XZ Tau A and B, with a projected separation of ~ 39 au. The 12CO (2-1) emission associated with those CSDs traces the Keplerian rotations, whose rotational axes are misaligned with each other (P.A. ~ -5 deg for XZ Tau A and ~ 130 deg for XZ Tau B). The similar systemic velocities of the two CSDs (VLSR ~ 6.0 km s-1) suggest that the orbital plane of the binary stars is close to the plane of the sky. From the multi-epoch ALMA data, we have also identified the relative orbital motion of the binary. Along with the previous NIR data, we found that the elliptical orbit (e = 0.742+0.025-0.034, a = 0.172+0.002-0.003, and {omega} = -54.2+2.0-4.7 deg) is preferable to the circular orbit. Our results suggest that the two CSDs and the orbital plane of the XZ Tau system are all misaligned with each other, and possible mechanisms to produce such a configuration are discussed. Our analyses of the multi-epoch ALMA archival data demonstrate the feasibility of time-domain science with ALMA.



قيم البحث

اقرأ أيضاً

The SR24 multi-star system hosts both circumprimary and circumsecondary disks, which are strongly misaligned from each other. The circumsecondary disk is circumbinary in nature. Interestingly, both disks are interacting, and they possibly rotate in o pposite directions. To investigate the nature of this unique twin disk system, we present 0.1 resolution near-infrared polarized intensity images of the circumstellar structures around SR24, obtained with HiCIAO mounted on the Subaru 8.2 m telescope. Both the circumprimary disk and the circumsecondary disk are resolved and have elongated features. While the position angle of the major axis and radius of the NIR polarization disk around SR24S are 55$^{circ}$ and 137 au, respectively, those around SR24N are 110$^{circ}$ and 34 au, respectively. With regard to overall morphology, the circumprimary disk around SR24S shows strong asymmetry, whereas the circumsecondary disk around SR24N shows relatively strong symmetry. Our NIR observations confirm the previous claim that the circumprimary and circumsecondary disks are misaligned from each other. Both the circumprimary and circumsecondary disks show similar structures in $^{12}$CO observations in terms of its size and elongation direction. This consistency is because both NIR and $^{12}$CO are tracing surface layers of the flared disks. As the radius of the polarization disk around SR24N is roughly consistent with the size of the outer Roche lobe, it is natural to interpret the polarization disk around SR24N as a circumbinary disk surrounding the SR24Nb-Nc system.
(Abridged) We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RYTau and DGTau at wavelengths of 1.3mm and 2.8mm. The angular resolution of the maps is as high as 0.15arcsec, or 20AU at the d istance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Does the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution, reproduces the observations well. The 1.3mm image from RYTau shows two peaks separated by 0.2arcsec with a decline in the dust emission toward the stellar position, which is significant at about 2-4sigma. For both RYTau and DGTau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 Jupiter masses orbiting either star at distances between about 10 and 60 AU. The radial variation of the dust opacity slope, beta, was investigated by comparing the 1.3mm and 2.8mm observations. We find mean values of beta of 0.5 and 0.7 for DGTau and RYTau respectively. Variations in beta are smaller than 0.7 between 20 and 70 AU. These results confirm that the circumstellar dust throughout these disks differs significantly from dust in the interstellar medium.
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical studies instead show disk formation to be difficult from dense molecular cores magnetized to a realistic level, owing to efficient magnetic braking that transports a large fraction of the angular momentum away from the circumstellar region. We review recent progress in the formation and early evolution of disks around young stellar objects of both low-mass and high-mass, with an emphasis on mechanisms that may bridge the gap between observation and theory, including non-ideal MHD effects and asymmetric perturbations in the collapsing core (e.g., magnetic field misalignment and turbulence). We also address the associated processes of outflow launching and the formation of multiple systems, and discuss possible implications in properties of protoplanetary disks.
The chemical composition of gas and ice in disks around young stars set the bulk composition of planets. In contrast to protoplanetary disks (Class II), young disks that are still embedded in their natal envelope (Class 0 and I) are predicted to be t oo warm for CO to freeze out, as has been confirmed observationally for L1527 IRS. To establish whether young disks are generally warmer than their more evolved counterparts, we observed five young (Class 0/I and Class I) disks in Taurus with the Atacama Large Millimeter/submillimeter Array (ALMA), targeting C$^{17}$O $2-1$, H$_2$CO $3_{1,2}-2_{1,1}$, HDO $3_{1,2}-2_{2,1}$ and CH$_3$OH $5_K-4_K$ transitions at $0.48^{primeprime} times 0.31^{primeprime}$ resolution. The different freeze-out temperatures of these species allow us to derive a global temperature structure. C$^{17}$O and H$_2$CO are detected in all disks, with no signs of CO freeze-out in the inner $sim$100 au, and a CO abundance close to $sim$10$^{-4}$. H$_2$CO emission originates in the surface layers of the two edge-on disks, as witnessed by the especially beautiful V-shaped emission pattern in IRAS~04302+2247. HDO and CH$_3$OH are not detected, with column density upper limits more than 100 times lower than for hot cores. Young disks are thus found to be warmer than more evolved protoplanetary disks around solar analogues, with no CO freeze-out (or only in the outermost part of $gtrsim$100 au disks) or CO processing. However, they are not as warm as hot cores or disks around outbursting sources, and therefore do not have a large gas-phase reservoir of complex molecules.
We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as $10^{-4} M_{odot}$. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of $F_{mm} propto M_{ast}^{1.5-2.0}$ to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا