ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability of the symbiotic X-ray binary GX 1+4: Enhanced activity near periastron passage

165   0   0.0 ( 0 )
 نشر من قبل Krystian Ilkiewicz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. The system has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims. We study variability of GX 1+4 on long time-scale in X-ray and optical bands. Methods. The presented X-ray observations are from INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. The optical observations are from INTEGRAL Optical Monitoring Camera. Results. The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by ~50-70d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum, which confirms the 1161d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.



قيم البحث

اقرأ أيضاً

We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accre tes from the stellar wind of an M-type giant companion. We measure a $9$ GHz radio flux density of $105.3 pm 7.3$ $mu$Jy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that that strong magnetic fields ($geq 10^{12}$ G) do not necessarily suppress jet formation.
76 - M.M. Serim 2017
We present analysis of RXTE--PCA observations of GX 1+4 between March 3, 2001 and January 31, 2003 together with the CGRO--BATSE X-ray flux and frequency derivative time series between 1991 and 1999. From the timing analysis of RXTE-PCA observations, we are able to phase connect pulse arrival times of the source within two different time intervals and obtain corresponding timing solutions. Using these pulse arrival times, we contribute to long term pulse frequency history of the source. We look for episodic correlations and anti-correlations between torque and X-ray luminosity using CGRO--BATSE X-ray flux and frequency derivative time series and find that correlation state of GX 1+4 seems to change on $sim$ 100-200 days long intervals. We estimate torque noise of the source and observe flickering noise ($f^{-1}$). We achieve to measure the longest observed timescale for a noise process among accretion powered X-ray pulsars by extending the noise estimate for a time scale ranging from 31 days to 44 years. Spectral analysis of individual RXTE-PCA observations indicates a significant correlation between iron line flux and unabsorbed X-ray flux. Pulse phase resolved spectra of the source indicate a broadening of iron line complex at the bin corresponding to the pulse minimum.
We present the results of UBVRI polarimetry of the TeV gamma-ray binary HESS J0632+057 obtained on 2015 March 24 (JD 2457106) and 2015 December 12 (JD 2457369). The detected polarisation values of HESS J0632+057, just after periastron passage (March 24), are higher than all previously published values (p(V) ~ 4.2%) and the position angle (theta ~ 171-172 degrees) is also different by ~6-10 degrees from previously published values. The data obtained just before the subsequent periastron passage (December 12) show statistically lower polarisation in all photometric bands (p(V) ~ 3.9%) and a different position angle theta ~ 167-168 degrees. From observations of a nearby field star, the interstellar component of the measured polarisation was estimated as p_is(V) ~ 0.65% and theta_is ~ 153 degrees. This estimate was used with the previous V-band estimation by field-stars method (p(V) ~ 2% and theta_is ~ 165 degrees) of Yudin (2014) to identify the wavelength dependence of the intrinsic polarisation in HESS J0632+057. It was found that after subtraction of the interstellar component (for both p_is estimates), the wavelength dependence of the intrinsic polarisation in HESS J0632+057 is essentially flat. We propose that the formation of an additional source of polarisation or some perturbation of circumstellar material at this orbital phase can explain the changes in the level of polarisation in HESS J0632+057 close to periastron passage.
We investigate variability of optical and near-infrared light curves of the X-ray binary GX 339-4 on a timescale of days. We use the data in four filters from six intervals corresponding to the soft state and from four intervals corresponding to the quiescent state. In the soft state, we find prominent oscillations with the average period P = 1.772 $pm$ 0.003 d, which is offset from the measured orbital period of the system by 0.7 per cent. We suggest that the measured periodicity originates from the superhumps. In line with this interpretation we find no periodicity in the quiescent state. The obtained period excess $epsilon$ is below typical values found for cataclysmic variables for the same mass ratio of the binary. We discuss implications of this finding in the context of the superhump theory.
118 - Arash Bahramian 2014
We use K-band spectroscopy of the counterpart to the rapidly variable X-ray transient XMMU J174445.5-295044 to identify it as a new symbiotic X-ray binary. XMMU J174445.5-295044 has shown a hard X-ray spectrum (we verify its association with an Integ ral/IBIS 18-40 keV detection in 2013 using a short Swift/XRT observation), high and varying N$_H$, and rapid flares on timescales down to minutes, suggesting wind accretion onto a compact star. We observed its near-infrared counterpart using the Near-infrared Integral Field Spectrograph (NIFS) at Gemini-North, and classify the companion as ~ M2 III. We infer a distance of $3.1^{+1.8}_{-1.1}$ kpc (conservative 1-sigma errors), and therefore calculate that the observed X-ray luminosity (2-10 keV) has reached to at least 4$times10^{34}$ erg/s. We therefore conclude that the source is a symbiotic X-ray binary containing a neutron star (or, less likely, black hole) accreting from the wind of a giant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا