ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband cavity-enhanced ultrafast spectroscopy

150   0   0.0 ( 0 )
 نشر من قبل Tom Allison
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Broadband ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D spectroscopy, are widely used to study molecular dynamics. However, these techniques are typically restricted to optically thick samples, such as solids and liquid solutions. In this article we discuss a cavity-enhanced ultrafast transient absorption spectrometer covering almost the entire visible range with a detection limit of $Delta$OD $ < 1 times 10^{-9}$, extending broadband all-optical ultrafast spectroscopy techniques to dilute beams of gas-phase molecules and clusters. We describe the technical innovations behind the spectrometer and present transient absorption data on two archetypical molecular systems for excited-state intramolecular proton transfer, 1-hydroxy-2-acetonapthone and salicylideneaniline, under jet-cooled and Ar cluster conditions.



قيم البحث

اقرأ أيضاً

We present broadband cavity-enhanced complex refractive index spectroscopy (CE-CRIS), a technique for calibration-free determination of the complex refractive index of entire molecular bands via direct measurement of transmission modes of a Fabry-Per ot cavity filled with the sample. The measurement of the cavity transmission spectrum is done using an optical frequency comb and a mechanical Fourier transform spectrometer with sub-nominal resolution. Molecular absorption and dispersion spectra (corresponding to the imaginary and real parts of the refractive index) are obtained from the cavity mode broadening and shift retrieved from fits of Lorentzian profiles to the individual cavity modes. This method is calibration-free because the mode broadening and shift are independent of the cavity parameters such as the length and mirror reflectivity. In this first demonstration of broadband CE-CRIS we measure simultaneously the absorption and dispersion spectra of three combination bands of CO2 in the range between 1525 nm and 1620 nm and achieve good agreement with theoretical models. This opens up for precision spectroscopy of the complex refractive index of several molecular bands simultaneously.
268 - Junyi Zhang 2017
Coupled-resonance spectroscopy has been recently reported and applied for spectroscopic measurements and laser stabilizations. With coupled-resonance spectroscopy, one may indirectly measure some transitions between the excited states that are hard t o be measured directly because of the lack of populations in the excited states. An improvement of the coupled-resonance spectroscopy by combining the technology of electromagnetically induced transparency (EIT) is proposed. The coupled-resonance spectroscopy signal can be significantly enhanced by EIT. Several experimental schemes have been discussed. The line shape of the EIT-enhanced coupled-resonance spectroscopy has been calculated.The EIT-enhanced coupled-resonance spectroscopy can be used for simultaneously stabilizing two lasers to the same atomic source.
Noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS) is a recently developed technique that utilizes phase modulation to obtain immunity to frequency-to-amplitude noise conversion by the cavity modes and yields high absorption sensitivity over a broad spectral range. We describe the principles of the technique and discuss possible comb-cavity matching solutions. We present a theoretical description of NICE-OFCS signals detected with a Fourier transform spectrometer (FTS), and validate the model by comparing it to experimental CO2 spectra around 1575 nm. Our system is based on an Er:fiber femtosecond laser locked to a cavity and phase-modulated at a frequency equal to a multiple of the cavity free spectral range (FSR). The NICE-OFCS signal is detected by a fast-scanning FTS equipped with a high-bandwidth commercial detector. We demonstrate a simple method of passive locking of the modulation frequency to the cavity FSR that significantly improves the long term stability of the system, allowing averaging times on the order of minutes. Using a cavity with a finesse of ~9000 we obtain absorption sensitivity of 6.4 x 10^{-11} cm^{-1} Hz^{-1/2} per spectral element, and concentration detection limit for CO2 of 450 ppb Hz^{-1/2}, determined by multiline fitting.
Dual-comb spectroscopy has been proven a powerful tool in molecular characterization, which remains challenging to implement in the mid-infrared (MIR) region due to difficulties in the realization of two mutually locked comb sources and efficient pho todetection. An effective way to overcome those limitations is optical upconversion; however, previously reported configurations are either demanding or inefficient. Here we introduce and experimentally demonstrate a variant of dual-comb spectroscopy called cross-comb spectroscopy, in which a MIR comb is upconverted via sum-frequency generation (SFG) with a near-infrared (NIR) comb with a shifted repetition rate and then interfered with a spectral extension of the NIR comb. We experimentally demonstrate a proof-of-concept measurement of atmospheric CO2 around 4.25 micrometer, with a 350-nm instantaneous bandwidth and 25000 resolved comb lines. Cross-comb spectroscopy can be realized using up- or down-conversion and offers an adaptable and efficient alternative to dual-comb spectroscopy outside the well-developed near-IR region, where having two mutually coherent sources and efficient photodetection is challenging. Moreover, the nonlinear gating in cross-comb spectroscopy promises a superior dynamic range compared to dual-comb spectroscopy.
We report here an experimental setup to perform three-pulse pump-probe measurements over a wide wavelength and temperature range. By combining two pump pulses in the visible (650-900 nm) and mid-IR (5-20 $mu$m) range, with a broadband supercontinuum white-light probe, our apparatus enables both the combined selective excitation of different material degrees of freedom and a full time-dependent reconstruction of the non-equilibrium dielectric function of the sample. We describe here the optical setup, the cryogenic sample environment and the custom-made acquisition electronics capable of referenced single-pulse detection of broadband spectra at the maximum repetition rate of 50 kHz, achieving a sensitivity of the order of 10$^{-4}$ over an integration time of 1 s. We demonstrate the performance of the setup by reporting data on mid-IR pump, optical push and broadband probe in a single-crystal of Bi$_2$Sr$_2$Y$_{0.08}$Ca$_{0.92}$Cu$_2$O$_{8+delta}$ across the superconducting and pseudogap phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا