ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-enhanced broadband THz emission from spintronic devices

160   0   0.0 ( 0 )
 نشر من قبل Mengji Chen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An ultra-broadband THz emitter covering a wide range of frequencies from 0.1 to 10 THz is highly desired for spectroscopy applications. So far, spintronic THz emitters have been proven as one class of efficient THz sources with a broadband spectrum while the performance in the lower frequency range (0.1 to 0.5 THz) limits its applications. In this work, we demonstrate a novel concept of a current-enhanced broad spectrum from spintronic THz emitters combined with semiconductor materials. We observe a 2-3 order enhancement of the THz signals in a lower THz frequency range (0.1 to 0.5 THz), in addition to a comparable performance at higher frequencies from this hybrid emitter. With a bias current, there is a photoconduction contribution from semiconductor materials, which can be constructively interfered with the THz signals generated from the magnetic heterostructures driven by the inverse spin Hall effect. Our findings push forward the utilization of metallic heterostructures-based THz emitters on the ultra-broadband THz emission spectroscopy.

قيم البحث

اقرأ أيضاً

We investigate the THz emission characteristics of ferromagnetic/non-magnetic metallic heterostructures, focusing on thin Fe/Pt bilayers. In particular, we report on the impact of optimized crystal growth of the epitaxial Fe layers on the THz emissio n amplitude and spectral bandwidth. We demonstrate an enhancement of the emitted intensity along with an expansion of the emission bandwidth. Both are related to reduced spin scattering and higher interface transmission. Our work provides a pathway for devicing optimal spintronic THz emitters based on epitaxial Fe. It also highlights how THz emission measurements can be utilized to characterize the changes in out-of-equilibrium spin current dynamics in metallic heterostructures, driven by subtle structural refinement.
The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode co ntains a magnetic tunnel junction with a canted magnetization of the free layer, and can convert RF energy over the frequency range from 100 MHz to 1.2 GHz into DC electric voltage. An attractive property of the developed NSD is the generation of an almost constant DC voltage in a wide range of frequencies of the external RF signals. We further show that the developed NSD provides sufficient DC voltage to power a low-power nanodevice - a black phosphorus photo-sensor. Our results demonstrate that the developed NSD could pave the way for using spintronic detectors as building blocks for self-powered nano-systems, such as implantable biomedical devices, wireless sensors, and portable electronics.
Monolayer molybdenum disulfide (MoS$_2$) nanosheets, obtained via chemical vapor deposition onto SiO$_2$/Si substrates, are exploited to fabricate field-effect transistors with n-type conduction, high on/off ratio, steep subthreshold slope and good m obility. The transistor channel conductance increases with the reducing air pressure due to oxygen and water desorption. Local field emission measurements from the edges of the MoS$_2$ nanosheets are performed in high vacuum using a tip-shaped anode. It is demonstrated that the voltage applied to the Si substrate back-gate modulates the field emission current. Such a finding, that we attribute to gate-bias lowering of the MoS$_2$ electron affinity, enables a new field-effect transistor based on field emission.
Bio-inspired hardware holds the promise of low-energy, intelligent and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for bio-medical prosthesi s. However, one of the major challenges of fabricating bio-inspired hardware is building ultra-high density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bio-inspired computing include tunable fast non-linear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nano-devices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bio-inspired architectures that include one or several types of spintronic nanodevices. In this article we show how spintronics can be used for bio-inspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges towards fully integrated spintronics-CMOS (Complementary metal - oxide - semiconductor) bio-inspired hardware.
We present an ultrafast graphene-based detector, working in the THz range at room temperature. A logarithmic-periodic antenna is coupled to a graphene flake that is produced by exfoliation on SiO2. The detector was characterized with the free-electro n laser FELBE for wavelengths from 8 um to 220 um. The detector rise time is 50 ps in the wavelength range from 30 um to 220 um. Autocorrelation measurements exploiting the nonlinear photocurrent response at high intensities reveal an intrinsic response time below 10 ps. This detector has a high potential for characterizing temporal overlaps, e. g. in two-color pump-probe experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا