ﻻ يوجد ملخص باللغة العربية
An ultra-broadband THz emitter covering a wide range of frequencies from 0.1 to 10 THz is highly desired for spectroscopy applications. So far, spintronic THz emitters have been proven as one class of efficient THz sources with a broadband spectrum while the performance in the lower frequency range (0.1 to 0.5 THz) limits its applications. In this work, we demonstrate a novel concept of a current-enhanced broad spectrum from spintronic THz emitters combined with semiconductor materials. We observe a 2-3 order enhancement of the THz signals in a lower THz frequency range (0.1 to 0.5 THz), in addition to a comparable performance at higher frequencies from this hybrid emitter. With a bias current, there is a photoconduction contribution from semiconductor materials, which can be constructively interfered with the THz signals generated from the magnetic heterostructures driven by the inverse spin Hall effect. Our findings push forward the utilization of metallic heterostructures-based THz emitters on the ultra-broadband THz emission spectroscopy.
We investigate the THz emission characteristics of ferromagnetic/non-magnetic metallic heterostructures, focusing on thin Fe/Pt bilayers. In particular, we report on the impact of optimized crystal growth of the epitaxial Fe layers on the THz emissio
The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode co
Monolayer molybdenum disulfide (MoS$_2$) nanosheets, obtained via chemical vapor deposition onto SiO$_2$/Si substrates, are exploited to fabricate field-effect transistors with n-type conduction, high on/off ratio, steep subthreshold slope and good m
Bio-inspired hardware holds the promise of low-energy, intelligent and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for bio-medical prosthesi
We present an ultrafast graphene-based detector, working in the THz range at room temperature. A logarithmic-periodic antenna is coupled to a graphene flake that is produced by exfoliation on SiO2. The detector was characterized with the free-electro