ﻻ يوجد ملخص باللغة العربية
We perform a multiwavelength study toward the SNR G18.1-0.1 and nearby several HII regions (infrared dust bubbles N21 and N22, and the HII regions G018.149-00.283 and G18.197-00.181). Our goal is to provide observational evidence supporting that massive stars usually born in clusters from the same molecular cloud, which then produce, along their evolution, different neighboring objects such as HII regions, interstellar bubbles and supernova remnants. We suggest that the objects analysed in this work belong to a same complex located at the distance of about 4 kpc. Using molecular data we inspected the interstellar medium toward this complex and from optical and X-ray observations we looked for OB-type stars in the region. Analysing public 13CO J=1--0 data we found several molecular structures very likely related to the HII region/SNR complex. We suggest that the molecular gas is very likely being swept and shaped by the expansion of the HII regions. From spectroscopic optical observations obtained with the 2.15 m telescope at CASLEO, Argentina, we discovered three O-type stars very likely exciting the bubbles N21 and N22, and an uncatalogued HII region northward bubble N22, respectively. Also we found four B0-5 stars, one toward the bubble N22 and the others within the HII region G18.149-0.283. By inspecting the Chandra Source Catalog we found two point X-ray sources and we suggest that one of them is an early O-type star. Finally we inspected the large scale interstellar medium around this region. We discovered a big molecular shell of about 70 pc x 28 pc in which the analysed complex appears to be located in its southern border.
New HI images from the VLA Galactic Plane Survey show prominent absorption features associated with the supernovae remnant G23.3-0.3 (SNR W41). We highlight the HI absorption spectra and the $^{13}$CO emission spectra of eight small regions on the fa
The four HII regions in the Sgr A East complex: A, B, C, and D, represent evidence of recent massive star formation in the central ten parsecs. Using Paschen-alpha images taken with HST and 8.4 GHz VLA data, we construct an extinction map of A-D, and briefly discuss their morphology and location.
We present observations and models of the behaviour of the HI and HeI lines between 1.6 and 2.2um in a small sample of compact HII regions. As in our previous papers on planetary nebulae, we find that the `pure 1.7007um 4^3D-3^3P and 2.16475um 7^(3,1
Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC147, NGC185, and NGC205) of the Andromed
We have analyzed a uniform sample of 16 evolved HII regions located in a 2 deg X 2 deg Galactic field centered at (l,b) = (30 deg, 0 deg) and observed as part of the Herschel Hi-GAL survey. The evolutionary stage of these HII regions was established