ترغب بنشر مسار تعليمي؟ اضغط هنا

Extinction toward the Compact HII Regions G-0.02-0.07

87   0   0.0 ( 0 )
 نشر من قبل Elisabeth Mills
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The four HII regions in the Sgr A East complex: A, B, C, and D, represent evidence of recent massive star formation in the central ten parsecs. Using Paschen-alpha images taken with HST and 8.4 GHz VLA data, we construct an extinction map of A-D, and briefly discuss their morphology and location.


قيم البحث

اقرأ أيضاً

We have observed the compact HII region complex nearest to the dynamical center of the Galaxy, G-0.02-0.07, using ALMA in the H42a recombination line, CS J=2-1, H13CO+ J=1-0, and SiO v=0, J=2-1 emission lines, and 86 GHz continuum emission. The HII r egions HII-A to HII-C in the cluster are clearly resolved into a shell-like feature with a bright-half and a dark-half in the recombination line and continuum emission. The absorption features in the molecular emission lines show that HII-A, B and C are located on the near side of the 50 km/s Molecular Cloud (50MC) but HII-D is located on the far side. The electron temperatures and densities range Te=5150-5920 K and ne=950-2340 cm-3, respectively. The electron temperatures on the bright-half are slightly lower than those on the dark-half, while the electron densities on the bright-half are slightly higher than those on the dark-half. The HII regions are located on the molecular filaments in the 50MC. They have already broken through the filaments and are growing in the surrounding molecular gas. There are some shocked molecular gas components around the HII regions. From line width of the H42a recombination line, the expansion velocities from HII-A to HII-D are estimated to be Vexp=16.7, 11.6, 11.1, and 12.1 km/s, respectively. The expansion timescales from HII-A to HII-D are estimated to be Tage~1.4x0^4, 1.7x10^4, 2.0x10^4, and 0.7x10^4 years, respectively. The spectral types of the central stars from HII-A to HII-D are estimated to be O8V, O9.5V, O9V, and B0V, respectively. The positional relation among the HII regions, the SiO molecule enhancement area, and Class-I maser spots suggest that the shock wave caused by a cloud-cloud collision propagated along the line from HII-C to HII-A in the 50MC. The shock wave would trigger the massive star formation.
118 - Tara Murphy 2010
We present radio and infrared observations of 4 hyper-compact HII regions and 4 ultra-compact HII regions in the southern Galactic plane. These objects were selected from a blind survey for UCHII regions using data from two new radio surveys of the s outhern sky; the Australia Telescope 20 GHz survey (AT20G) and the 2nd epoch Molonglo Galactic Plane Survey (MGPS-2) at 843 MHz. To our knowledge, this is the first blind radio survey for hyper- and ultra-compact HII regions. We have followed up these sources with the Australia Telescope Compact Array to obtain H70-alpha recombination line measurements, higher resolution images at 20 GHz and flux density measurements at 30, 40 and 95 GHz. From this we have determined sizes and recombination line temperatures as well as modeling the spectral energy distributions to determine emission measures. We have classified the sources as hyper-compact or ultra-compact on the basis of their physical parameters, in comparison with benchmark parameters from the literature. Several of these bright, compact sources are potential calibrators for the Low Frequency Instrument (30-70 GHz) and the 100-GHz channel of the High Frequency Instrument of the Planck satellite mission. They may also be useful as calibrators for the Australia Telescope Compact Array, which lacks good non-variable primary flux calibrators at higher frequencies and in the Galactic plane region. Our spectral energy distributions allow the flux densities within the Planck bands to be determined, although our high frequency observations show that several sources have excess emission at 95 GHz (3 mm) that can not be explained by current models.
We present a determination of the luminosity functions of massive young stellar objects (MYSOs) and compact (C)HII regions within the Milky Way Galaxy using the large, well-selected sample of these sources identified by the Red MSX Source (RMS) surve y. The MYSO luminosity function decreases monotonically such that there are few with $Lgtrsim 10^{5}$Lsol, whilst the CHII regions are detected up to ~10$^{6}Lsol. The lifetimes of these phases are also calculated as a function of luminosity by comparison with the luminosity function for local main-sequence OB stars. These indicate that the MYSO phase has a duration ranging from 4x10$^{5}$ yrs for 10$^{4}$Lsol to ~7x10$^{4}$ yrs at 10$^{5}$Lsol, whilst the CHII region phase lasts of order 3x10$^{5}$ yrs or ~3-10% of the exciting stars main-sequence lifetime. MYSOs between 10$^{4} Lsol and ~10$^{5}$ Lsol are massive but do not display the radio continuum or near-IR HI{} recombination line emission indicative of an HII region, consistent with being swollen due to high ongoing or recent accretion rates. Above ~10$^{5}$ Lsol the MYSO phase lifetime becomes comparable to the main-sequence Kelvin-Helmholtz timescale, at which point the central star can rapidly contract onto the main-sequence even if still accreting, and ionise a CHII region, thus explaining why few highly luminous MYSOs are observed.
We present spectral line mapping observations toward four massive star-forming regions (Cepheus A, DR21S, S76E and G34.26+0.15), with the IRAM 30 meter telescope at 2 mm and 3 mm bands. Totally 396 spectral lines from 51 molecules, one helium recombi nation line, ten hydrogen recombination lines, and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 14$_{0,14}$-13$_{0,13}$) was detected in G34.26+0.15, as first detection in massive star-forming regions. We found that the $c$-C$_{3}$H$_{2}$ and NH$_{2}$D show enhancement in shocked regions as suggested by evidences of SiO and/or SO emission. Column density and rotational temperature of CH$_{3}$CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of $^{12}$C/$^{13}$C were derived using HC$_{3}$N and its $^{13}$C isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value ($sim$65). $^{14}$N/$^{15}$N and $^{16}$O/$^{18}$O abundance ratios in these sources were also derived using double isotopic method, which were slightly lower than that in local interstellar medium. Except for Cep A, $^{33}$S/$^{34}$S ratio in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N(DCO$^{+}$)/N(HCO$^{+}$) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5$times$10$ ^{-5}$. Our results show the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage ones. Evidence of shock activity is seen in all stages studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا