ﻻ يوجد ملخص باللغة العربية
New HI images from the VLA Galactic Plane Survey show prominent absorption features associated with the supernovae remnant G23.3-0.3 (SNR W41). We highlight the HI absorption spectra and the $^{13}$CO emission spectra of eight small regions on the face of W41, including four HII regions, three non-thermal emission regions and one unclassified region. The maximum velocity of absorption for W41 is 78$pm$2 km/s and the CO cloud at radial velocity 95$pm$5 km/s is behind W41. Because an extended TeV source, a diffuse X-ray enhancement and a large molecular cloud at radial velocity 77$pm$5 km/s are also projected at the center of W41, these yield the kinematic distance of 3.9 to 4.5 kpc for W41. For HII regions, our analyses reveal that both G23.42-0.21 and G23.07+0.25 are at the far kinematic distances ($sim$9.9 kpc and $sim$ 10.6 kpc respectively) of their recombination-line velocities (103$pm$0.5 km/s and 89.6$pm$2.1 km/s respectively), G23.07-0.37 is at the near kinematic distance (4.4$pm$0.3 kpc) of its recombination-line velocity (82.7$pm$2.0 km/s), and G23.27-0.27 is probably at the near kinematic distance (4.1$pm$0.3 kpc) of its recombination-line velocity (76.1$pm$0.6 km/s).
We perform a multiwavelength study toward the SNR G18.1-0.1 and nearby several HII regions (infrared dust bubbles N21 and N22, and the HII regions G018.149-00.283 and G18.197-00.181). Our goal is to provide observational evidence supporting that mass
Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-co
High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-
We have discovered a number of very small isolated HII regions 20-30 kpc from their nearest galaxy. The HII regions appear as tiny emission line dots (ELdots) in narrow band images obtained by the NOAO Survey for Ionization in Neutral Gas Galaxies (S
We report the first results of a long term program aiming to provide accurate independent estimates of the Hubble constant (H0) using the L-sigma distance estimator for Giant extragalactic HII regions (GEHR) and HII galaxies. We have used VLT and S