ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer and Herschel multiwavelength characterization of the dust content of evolved HII regions

110   0   0.0 ( 0 )
 نشر من قبل Roberta Paladini
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have analyzed a uniform sample of 16 evolved HII regions located in a 2 deg X 2 deg Galactic field centered at (l,b) = (30 deg, 0 deg) and observed as part of the Herschel Hi-GAL survey. The evolutionary stage of these HII regions was established using ancillary radio continuum data. By combining Hi-GAL PACS (70 micron, 160 micron) and SPIRE (250 micron, 350 micron and 500 micron) measurements with MIPSGAL 24 micron data, we built Spectral Energy Distributions (SEDs) of the sources and showed that a 2-component grey-body model is a good representation of the data. In particular, wavelengths > 70 micron appear to trace a cold dust component, for which we estimated an equilibrium temperature of the Big Grains (BGs) in the range 20 - 30 K, while for lambda < 70 micron, the data indicated the presence of a warm dust component at temperatures of the order of 50 - 90 K. This analysis also revealed that dust is present in the interior of HII regions, although likely not in a large amount. In addition, the data appear to corroborate the hypothesis that the main mechanism responsible for the (partial) depletion of dust in HII regions is radiation-pressure-driven drift. In this framework, we speculated that the 24 micron emission which spatially correlates with ionized gas might be associated with either Very Small Grain (VSG) or BG replenishment, as recently proposed for the case of Wind-Blown Bubbles (WBB). Finally, we found that evolved HII regions are characterized by distinctive far-IR and sub-mm colors, which can be used as diagnostics for their identification in unresolved Galactic and extragalactic regions.



قيم البحث

اقرأ أيضاً

Because of their relatively simple morphology, bubble HII regions have been instrumental to our understanding of star formation triggered by HII regions. With the far-infrared (FIR) spectral coverage of the Herschel satellite, we can access the wavel engths where these regions emit the majority of their energy through their dust emission. At Herschel wavelengths 70 micron to 500 micron, the emission associated with HII regions is dominated by the cool dust in their photodissociation regions (PDRs). We find average dust temperatures of 26K along the PDRs, with little variation between the HII regions in the sample, while local filaments and infrared dark clouds average 19K and 15K respectively. Higher temperatures lead to higher values of the Jeans mass, which may affect future star formation. The mass of the material in the PDR, collected through the expansion of the HII region, is between ~300 and ~10,000 Solar masses for the HII regions studied here. These masses are in rough agreement with the expected masses swept up during the expansion of the hii regions. Approximately 20% of the total FIR emission is from the direction of the bubble central regions. This suggests that we are detecting emission from the near-side and far-side PDRs along the line of sight and that bubbles are three-dimensional structures. We find only weak support for a relationship between dust temperature and beta, of a form similar to that caused by noise and calibration uncertainties alone.
The generation of infrared (IR) radiation and the observed IR intensity distribution at wavelengths of 8, 24, and 100 micron in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included -- large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 micron. A model in which PAHs are destroyed in the ionized region provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.
The conversion of the IR emission into star formation rate can be strongly dependent on the physical properties of the dust, which are affected by the environmental conditions where the dust is embedded. We study here the dust properties of a set of HII regions in the Local Group Galaxy M33 presenting different spatial configurations between the stars, gas and dust to understand the dust evolution under different environments. We model the SED of each region using the DustEM tool and obtain the mass relative to hydrogen for Very Small Grains (YVSG), Polycyclic Aromatic Hydrocarbons (YPAH) and Big Grains (YBG). The relative mass of the VSGs (YVSG/YTOT) is a factor of 1.7 higher for HII regions classified as filled and mixed than for regions presenting a shell structure. The enhancement of VSGs within NGC 604 and NGC 595 is correlated to expansive gas structures with velocities greater than 50 km/s. The gas-to-dust ratio derived for the HII regions in our sample exhibits two regimes related to the HI-H2 transition of the ISM. Regions corresponding to the HI diffuse regime present a gas-to-dust ratio compatible with the expected value if we assume that the gas-to-dust ratio scales linearly with metallicity, while regions corresponding to a H2 molecular phase present a flatter dust-gas surface density distribution. The fraction of VSGs can be affected by the conditions of the interstellar environment: strong shocks of 50-90 km/s existing in the interior of the most luminous HII regions can lead to fragmentation of BGs into smaller ones, while the more evolved shell and clear shell objects provide a more quiescent environment where reformation of dust BG grains might occur. The gas-to-dust variations found in this analysis might imply that grain coagulation and/or gas-phase metals incorporation to the dust mass is occurring in the interior of the HII regions in M33.
We present a detailed analysis of deep far-infrared observations of the nearby edge-on star-forming galaxy NGC 4631 obtained with the Herschel Space Observatory. Our PACS images at 70 and 160 um show a rich complex of filaments and chimney-like featu res that extends up to a projected distance of 6 kpc above the plane of the galaxy. The PACS features often match extraplanar Halpha, radio-continuum, and soft X-ray features observed in this galaxy, pointing to a tight disk-halo connection regulated by star formation. On the other hand, the morphology of the colder dust component detected on larger scale in the SPIRE 250, 350, and 500 um data matches the extraplanar H~I streams previously reported in NGC 4631 and suggests a tidal origin. The PACS 70/160 ratios are elevated in the central ~3.0 kpc region above the nucleus of this galaxy (the superbubble). A pixel-by-pixel analysis shows that dust in this region has a higher temperature and/or an emissivity with a steeper spectral index (beta > 2) than the dust in the disk, possibly the result of the harsher environment in the superbubble. Star formation in the disk seems energetically insufficient to lift the material out of the disk, unless it was more active in the past or the dust-to-gas ratio in the superbubble region is higher than the Galactic value. Some of the dust in the halo may also have been tidally stripped from nearby companions or lifted from the disk by galaxy interactions.
We present deep far-infrared observations of the nearby edge-on galaxy NGC 891 obtained with the Herschel Space Observatory and the Spitzer Space Telescope. The maps confirm the detection of thermal emission from the inner circumgalactic medium (halo ) and spatially resolve a dusty superbubble and a dust spur (filament). The dust temperature of the halo component is lower than that of the disk but increases across a region of diameter ~8.0 kpc extending at least 7.7 kpc vertically from one side of the disk, a region we call a superbubble because of its association with thermal X-ray emission and a minimum in the synchrotron scaleheight. This outflow is breaking through the thick disk and developing into a galactic wind, which is of particular interest because NGC 891 is not considered a starburst galaxy; the star formation rate surface density, 0.03 Msun/year per square kiloparsec, and gas fraction, just 10% in the inner disk, indicate the threshold for wind formation is lower than previous work has suggested. We conclude that the star formation surface density is sufficient for superbubble blowout into the halo, but the cosmic ray electrons may play a critical role in determining whether this outflow develops into a fountain or escapes from the gravitational potential. The high dust-to-gas ratio in the dust spur suggests the material was pulled out of NGC 891 through the collision of a minihalo with the disk of NGC 891. We conclude that NGC 891 offers an example of both feedback and satellite interactions transporting dust into the halo of a typical galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا