ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of integral modular categories of Frobenius-Perron dimension pq^4 and p^2q^2

173   0   0.0 ( 0 )
 نشر من قبل Deepak Naidu
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We classify integral modular categories of dimension pq^4 and p^2q^2 where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.



قيم البحث

اقرأ أيضاً

We characterize a natural class of modular categories of prime power Frobenius-Perron dimension as representation categories of twisted doubles of finite p-groups. We also show that a nilpotent braided fusion category C admits an analogue of the Sylo w decomposition. If the simple objects of C have integral Frobenius-Perron dimensions then C is group-theoretical. As a consequence, we obtain that semisimple quasi-Hopf algebras of prime power dimension are group-theoretical. Our arguments are based on a reconstruction of twisted group doubles from Lagrangian subcategories of modular categories (this is reminiscent to the characterization of doubles of quasi-Lie bialgebras in terms of Manin pairs).
Let $p$ and $q$ be distinct prime numbers. We study the Galois objects and cocycle deformations of the noncommutative, noncocommutative, semisimple Hopf algebras of odd dimension $p^3$ and of dimension $pq^2$. We obtain that the $p+1$ non-isomorphic self-dual semisimple Hopf algebras of dimension $p^3$ classified by Masuoka have no non-trivial cocycle deformations, extending his previous results for the 8-dimensional Kac-Paljutkin Hopf algebra. This is done as a consequence of the classification of categorical Morita equivalence classes among semisimple Hopf algebras of odd dimension $p^3$, established by the third-named author in an appendix.
58 - Cris Negron 2018
We construct log-modular quantum groups at even order roots of unity, both as finite-dimensional ribbon quasi-Hopf algebras and as finite ribbon tensor categories, via a de-equivariantization procedure. The existence of such quantum groups had been p redicted by certain conformal field theory considerations, but constructions had not appeared until recently. We show that our quantum groups can be identified with those of Creutzig-Gainutdinov-Runkel in type A_1, and Gainutdinov-Lentner-Ohrmann in arbitrary Dynkin type. We discuss conjectural relations with vertex operator algebras at (1,p)-central charge. For example, we explain how one can (conjecturally) employ known linear equivalences between the triplet vertex algebra and quantum sl_2, in conjunction with a natural PSL_2-action on quantum sl_2 provided by our de-equivariantization construction, in order to deduce linear equivalences between extended quantum groups, the singlet vertex operator algebra, and the (1,p)-Virasoro logarithmic minimal model. We assume some restrictions on the order of our root of unity outside of type A_1, which we intend to eliminate in a subsequent paper.
We develop a symbolic computational approach to classifying low-rank modular categories. We use this technique to classify pseudo-unitary modular categories of rank at most 5 that are non-self-dual, i.e. those for which some object is not isomorphic to its dual object.
Let $C$ be a modular category of Frobenius-Perron dimension $dq^n$, where $q$ is a prime number and $d$ is a square-free integer. We show that if $q>2$ then $C$ is integral and nilpotent. In particular, $C$ is group-theoretical. In the general case, we describe the structure of $C$ in terms of equivariantizations of group-crossed braided fusion categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا