ﻻ يوجد ملخص باللغة العربية
We classify integral modular categories of dimension pq^4 and p^2q^2 where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.
We characterize a natural class of modular categories of prime power Frobenius-Perron dimension as representation categories of twisted doubles of finite p-groups. We also show that a nilpotent braided fusion category C admits an analogue of the Sylo
Let $p$ and $q$ be distinct prime numbers. We study the Galois objects and cocycle deformations of the noncommutative, noncocommutative, semisimple Hopf algebras of odd dimension $p^3$ and of dimension $pq^2$. We obtain that the $p+1$ non-isomorphic
We construct log-modular quantum groups at even order roots of unity, both as finite-dimensional ribbon quasi-Hopf algebras and as finite ribbon tensor categories, via a de-equivariantization procedure. The existence of such quantum groups had been p
We develop a symbolic computational approach to classifying low-rank modular categories. We use this technique to classify pseudo-unitary modular categories of rank at most 5 that are non-self-dual, i.e. those for which some object is not isomorphic to its dual object.
Let $C$ be a modular category of Frobenius-Perron dimension $dq^n$, where $q$ is a prime number and $d$ is a square-free integer. We show that if $q>2$ then $C$ is integral and nilpotent. In particular, $C$ is group-theoretical. In the general case,