ترغب بنشر مسار تعليمي؟ اضغط هنا

Log-modular quantum groups at even roots of unity and the quantum Frobenius I

59   0   0.0 ( 0 )
 نشر من قبل Cris Negron
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Cris Negron




اسأل ChatGPT حول البحث

We construct log-modular quantum groups at even order roots of unity, both as finite-dimensional ribbon quasi-Hopf algebras and as finite ribbon tensor categories, via a de-equivariantization procedure. The existence of such quantum groups had been predicted by certain conformal field theory considerations, but constructions had not appeared until recently. We show that our quantum groups can be identified with those of Creutzig-Gainutdinov-Runkel in type A_1, and Gainutdinov-Lentner-Ohrmann in arbitrary Dynkin type. We discuss conjectural relations with vertex operator algebras at (1,p)-central charge. For example, we explain how one can (conjecturally) employ known linear equivalences between the triplet vertex algebra and quantum sl_2, in conjunction with a natural PSL_2-action on quantum sl_2 provided by our de-equivariantization construction, in order to deduce linear equivalences between extended quantum groups, the singlet vertex operator algebra, and the (1,p)-Virasoro logarithmic minimal model. We assume some restrictions on the order of our root of unity outside of type A_1, which we intend to eliminate in a subsequent paper.



قيم البحث

اقرأ أيضاً

At roots of unity the $N$-state integrable chiral Potts model and the six-vertex model descend from each other with the $tau_2$ model as the intermediate. We shall discuss how different gauge choices in the six-vertex model lead to two different quan tum group constructions with different $q$-Pochhammer symbols, one construction only working well for $N$ odd, the other equally well for all $N$. We also address the generalization based on the sl$(m,n)$ vertex model.
The goal of this paper is to construct quantum analogues of Chevalley groups inside completions of quantum groups or, more precisely, inside completions of Hall algebras of finitary categories. In particular, we obtain pentagonal and other identities in the quantum Chevalley groups which generalize their classical counterparts and explain Faddeev-Volkov quantum dilogarithmic identities and their recent generalizations due to Keller
105 - Alexei Davydov , Pavel Etingof , 2017
We compute the group of braided tensor autoequivalences and the Brauer-Picard group of the representation category of the small quantum group $mathfrak{u}_q(mathfrak{g})$, where $q$ is a root of unity.
In 2007, G.E. Andrews introduced the $(n+1)$-variable combinatorial generating function $R_n(x_1,x_2,cdots,x_n;q)$ for ranks of $n$-marked Durfee symbols, an $(n+1)$-dimensional multisum, as a vast generalization to the ordinary two-variable partitio n rank generating function. Since then, it has been a problem of interest to understand the automorphic properties of this function; in special cases and under suitable specializations of parameters, $R_n$ has been shown to possess modular, quasimodular, and mock modular properties when viewed as a function on the upper half complex plane $mathbb H$, in work of Bringmann, Folsom, Garvan, Kimport, Mahlburg, and Ono. Quantum modular forms, defined by Zagier in 2010, are similar to modular or mock modular forms but are defined on the rationals $mathbb Q$ as opposed to $mathbb H$, and exhibit modular transformations there up to suitably analytic error functions in $mathbb R$; in general, they have been related to diverse areas including number theory, topology, and representation theory. Here, we establish quantum modular properties of $R_n$.
Understanding the relationship between mock modular forms and quantum modular forms is a problem of current interest. Both mock and quantum modular forms exhibit modular-like transformation properties under suitable subgroups of $rm{SL}_2(mathbb Z)$, up to nontrivial error terms; however, their domains (the upper half-plane $mathbb H$, and the rationals $mathbb Q$, respectively) are notably different. Quantum modular forms, originally defined by Zagier in 2010, have also been shown to be related to the diverse areas of colored Jones polynomials, meromorphic Jacobi forms, partial theta functions, vertex algebras, and more. In this paper we study the $(n+1)$-variable combinatorial rank generating function $R_n(x_1,x_2,dots,x_n;q)$ for $n$-marked Durfee symbols. These are $n+1$ dimensional multisums for $n>1$, and specialize to the ordinary two-variable partition rank generating function when $n=1$. The mock modular properties of $R_n$ when viewed as a function of $tauinmathbb H$, with $q=e^{2pi i tau}$, for various $n$ and fixed parameters $x_1, x_2, cdots, x_n$, have been studied in a series of papers. Namely, by Bringmann and Ono when $n=1$ and $x_1$ a root of unity; by Bringmann when $n=2$ and $x_1=x_2=1$; by Bringmann, Garvan, and Mahlburg for $ngeq 2$ and $x_1=x_2=dots=x_n=1$; and by the first and third authors for $ngeq 2$ and the $x_j$ suitable roots of unity ($1leq j leq n$). The quantum modular properties of $R_1$ readily follow from existing results. Here, we focus our attention on the case $ngeq 2$, and prove for any $ngeq 2$ that the combinatorial generating function $R_n$ is a quantum modular form when viewed as a function of $x in mathbb Q$, where $q=e^{2pi i x}$, and the $x_j$ are suitable distinct roots of unity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا