ﻻ يوجد ملخص باللغة العربية
We characterize a natural class of modular categories of prime power Frobenius-Perron dimension as representation categories of twisted doubles of finite p-groups. We also show that a nilpotent braided fusion category C admits an analogue of the Sylow decomposition. If the simple objects of C have integral Frobenius-Perron dimensions then C is group-theoretical. As a consequence, we obtain that semisimple quasi-Hopf algebras of prime power dimension are group-theoretical. Our arguments are based on a reconstruction of twisted group doubles from Lagrangian subcategories of modular categories (this is reminiscent to the characterization of doubles of quasi-Lie bialgebras in terms of Manin pairs).
We first show that every group-theoretical category is graded by a certain double coset ring. As a consequence, we obtain a necessary and sufficient condition for a group-theoretical category to be nilpotent. We then give an explicit description of t
The semidirect product of a finitely generated group dual with the symmetric group can be described through so-called group-theoretical categories of partitions (covers only a special case; due to Raum--Weber, 2015) and skew categories of partitions
We propose a general method to realize an arbitrary Weyl group of Kac-Moody type as a group of birational canonical transformations, by means of a nilpotent Poisson algebra. We also give a Lie theoretic interpretation of this realization in terms of Kac-Moody Lie algebras and Kac-Moody groups.
We classify integral modular categories of dimension pq^4 and p^2q^2 where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of
We prove that representations of the braid groups coming from weakly group-theoretical braided fusion categories have finite images.