ترغب بنشر مسار تعليمي؟ اضغط هنا

Cocycle deformations and Galois objects for semisimple Hopf algebras of dimension $p^3$ and $pq^2$

94   0   0.0 ( 0 )
 نشر من قبل Sonia Natale
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $p$ and $q$ be distinct prime numbers. We study the Galois objects and cocycle deformations of the noncommutative, noncocommutative, semisimple Hopf algebras of odd dimension $p^3$ and of dimension $pq^2$. We obtain that the $p+1$ non-isomorphic self-dual semisimple Hopf algebras of dimension $p^3$ classified by Masuoka have no non-trivial cocycle deformations, extending his previous results for the 8-dimensional Kac-Paljutkin Hopf algebra. This is done as a consequence of the classification of categorical Morita equivalence classes among semisimple Hopf algebras of odd dimension $p^3$, established by the third-named author in an appendix.



قيم البحث

اقرأ أيضاً

122 - Ehud Meir 2018
For a given finite dimensional Hopf algebra $H$ we describe the set of all equivalence classes of cocycle deformations of $H$ as an affine variety, using methods of geometric invariant theory. We show how our results specialize to the Universal Coeff icients Theorem in the case of a group algebra, and we also give examples from other families of Hopf algebras, including dual group algebras and Bosonizations of Nichols algebras. In particular, we use the methods developed here to classify the cocycle deformations of a dual pointed Hopf algebra associated to the symmetric group on three letters. We also give an example of a cocycle deformation over a dual group algebra, which has only rational invariants, but which is not definable over the rational field. This differs from the case of group algebras, in which every two-cocycle is equivalent to one which is definable by its invariants.
Let H be a non-semisimple Hopf algebra of dimension 2p^2 over an algebraically closed field of characteristic zero, where p is an odd prime. We prove that H or H^* is pointed, which completes the classification for Hopf algebras of these dimensions.
We show that all finite dimensional pointed Hopf algebras with the same diagram in the classification scheme of Andruskiewitsch and Schneider are cocycle deformations of each other. This is done by giving first a suitable characterization of such Hop f algebras, which allows for the application of a result of Masuoka about Morita-Takeuchi equivalence and of Schauenburg about Hopf Galois extensions. The infinitesimal part of the deforming cocycle and of the deformation determine the deformed multiplication and can be described explicitly in terms of Hochschild cohomology. Applications to, and results for copointed Hopf algebras are also considered.
179 - Adriana Balan 2008
The notions of Galois and cleft extensions are generalized for coquasi-Hopf algebras. It is shown that such an extension over a coquasi-Hopf algebra is cleft if and only if it is Galois and has the normal basis property. A Schneider type theorem is p roven for coquasi-Hopf algebras with bijective antipode. As an application, we generalize Schauenburgs bialgebroid construction for coquasi-Hopf algebras.
We compute higher Frobenius-Schur indicators of pq-dimensional pointed Hopf algebras in characteristic p through their associated graded Hopf algebras. These indicators are gauge invariants for the monoidal categories of representations of these algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا