ترغب بنشر مسار تعليمي؟ اضغط هنا

One-particle irreducible functional approach - a new route to diagrammatic extensions of DMFT

47   0   0.0 ( 0 )
 نشر من قبل Andrey Katanin Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an approach which is based on the one-particle irreducible (1PI) generating functional formalism and includes electronic correlations on all length-scales beyond the local correlations of dynamical mean field theory (DMFT). This formalism allows us to unify aspects of the dynamical vertex approximation (DGammaA) and the dual fermion (DF) scheme, yielding a consistent formulation of non-local correlations at the one- and two-particle level beyond DMFT within the functional integral formalism. In particular, the considered approach includes one-particle reducible contributions from the three- and more-particle vertices in the dual fermion approach, as well as some diagrams not included in the ladder version of DGammaA. To demonstrate the applicability and physical content of the 1PI approach, we compare the diagrammatics of 1PI, DF and DGammaA, as well as the numerical results of these approaches for the half-filled Hubbard model in two dimensions.

قيم البحث

اقرأ أيضاً

The dual-fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, negle ct higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work we compute the dual-fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact Diagrammatic Determinant Monte Carlo simulations to systematically assess convergence of the dual-fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Neel transition, the dual-fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered ($4 leq U/t leq 12$), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find however that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.
The new challenges posed by the need of finding strong rare-earth free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE). We argue that correlated electron effects, which are normally underestimated in band structure calculations, play a crucial role in the development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from this orbital component, the ability to include correlation effects has profound consequences on our predictive power of the MAE of strong magnets. Here we show that incorporating the local effects of electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment, the mass enhancement and the MAE of YCo5.
We implemented the derivative of the free energy functional with respect to the atom displacements, so called force, within the combination of Density Functional Theory and the Embedded Dynamical Mean Field Theory. We show that in combination with th e numerically exact quantum Monte Carlo (MC) impurity solver, the MC noise cancels to a great extend, so that the method can be used very efficiently for structural optimization of correlated electron materials. As an application of the method, we show how strengthening of the fluctuating moment in FeSe superconductor leads to a substantial increase of the anion height, and consequently to a very large effective mass, and also strong orbital differentiation.
145 - N. Dupuis 2013
We propose a nonperturbative renormalization-group (NPRG) approach to fermion systems in the two-particle-irreducible (2PI) effective action formalism, based on an exact RG equation for the Luttinger-Ward functional. This approach enables us to descr ibe phases with spontaneously broken symmetries while satisfying the Mermin-Wagner theorem. We show that it is possible to choose the Hartree-Fock--RPA theory as initial condition of the RG flow and argue that the 2PI-NPRG is not restricted to the weak-coupling limit. An expansion of the Luttinger-Ward functional about the minimum of the 2PI effective action including only the two-particle 2PI vertex leads to nontrivial RG equations where interactions between fermions and collective excitations naturally emerge.
65 - O. S. Barisic 2007
In the context of the Holstein polaron problem it is shown that the dynamical mean field theory (DMFT) corresponds to the summation of a special class of local diagrams in the skeleton expansion of the self-energy. In the real space representation, t hese local diagrams are characterized by the absence of vertex corrections involving phonons at different lattice sites. Such corrections vanish in the limit of infinite dimensions, for which the DMFT provides the exact solution of the Holstein polaron problem. However, for finite dimensional systems the accuracy of the DMFT is limited. In particular, it cannot describe correctly the adiabatic spreading of the polaron over multiple lattice sites. Arguments are given that the DMFT limitations on vertex corrections found for the Holstein polaron problem persist for finite electron densities and arbitrary phonon dispersion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا