ﻻ يوجد ملخص باللغة العربية
The dual-fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work we compute the dual-fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact Diagrammatic Determinant Monte Carlo simulations to systematically assess convergence of the dual-fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Neel transition, the dual-fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered ($4 leq U/t leq 12$), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find however that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.
In this work we introduce the Dual Boson Diagrammatic Monte Carlo technique for strongly interacting electronic systems. This method combines the strength of dynamical mean-filed theory for non-perturbative description of local correlations with the
We propose a modified coupled cluster Monte Carlo algorithm that stochastically samples connected terms within the truncated Baker--Campbell--Hausdorff expansion of the similarity transformed Hamiltonian by construction of coupled cluster diagrams on
Strong electronic correlations pose one of the biggest challenges to solid state theory. We review recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT)
We present a simple trick that allows to consider the sum of all connected Feynman diagrams at fixed position of interaction vertices for general fermionic models. With our approach one achieves superior performance compared to Diagrammatic Monte Car
We propose a novel approach to nonequilibrium real-time dynamics of quantum impurities models coupled to biased non-interacting leads, such as those relevant to quantum transport in nanoscale molecular devices. The method is based on a Diagrammatic M