ﻻ يوجد ملخص باللغة العربية
We implemented the derivative of the free energy functional with respect to the atom displacements, so called force, within the combination of Density Functional Theory and the Embedded Dynamical Mean Field Theory. We show that in combination with the numerically exact quantum Monte Carlo (MC) impurity solver, the MC noise cancels to a great extend, so that the method can be used very efficiently for structural optimization of correlated electron materials. As an application of the method, we show how strengthening of the fluctuating moment in FeSe superconductor leads to a substantial increase of the anion height, and consequently to a very large effective mass, and also strong orbital differentiation.
Materials with correlated electrons often respond very strongly to external or internal influences, leading to instabilities and states of matter with broken symmetry. This behavior can be studied theoretically either by evaluating the linear respons
We present a charge and self-energy self-consistent computational scheme for correlated systems based on the Korringa-Kohn-Rostoker (KKR) multiple scattering theory with the many-body effects described by the means of dynamical mean field theory (DMF
The stationary functional of the all-electron density functional plus dynamical mean field theory (DFT+DMFT) formalism to perform free energy calculations and structural relaxations is implemented for the first time. Here, the first order error in th
We investigate the effect of charge self-consistency (CSC) in density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations compared to simpler one-shot calculations for materials where interaction effects lead to a strong redist
The most general way to describe localized atomic-like electronic states in strongly correlated compounds is to utilize Wannier functions. In the present paper we continue the development of widely-spread DFT+U method onto Wannier function basis set