ﻻ يوجد ملخص باللغة العربية
We propose a nonperturbative renormalization-group (NPRG) approach to fermion systems in the two-particle-irreducible (2PI) effective action formalism, based on an exact RG equation for the Luttinger-Ward functional. This approach enables us to describe phases with spontaneously broken symmetries while satisfying the Mermin-Wagner theorem. We show that it is possible to choose the Hartree-Fock--RPA theory as initial condition of the RG flow and argue that the 2PI-NPRG is not restricted to the weak-coupling limit. An expansion of the Luttinger-Ward functional about the minimum of the 2PI effective action including only the two-particle 2PI vertex leads to nontrivial RG equations where interactions between fermions and collective excitations naturally emerge.
Studying the strong correlation effects in interacting Dirac fermion systems is one of the most challenging problems in modern condensed matter physics. The long-range Coulomb interaction and the fermion-phonon interaction can lead to a variety of in
We reexamine the two-dimensional linear O(2) model ($varphi^4$ theory) in the framework of the nonperturbative renormalization-group. From the flow equations obtained in the derivative expansion to second order and with optimization of the infrared r
We generalize the recently introduced dual fermion (DF) formalism for disordered fermion systems by including the effect of interactions. For an interacting disordered system the contributions to the full vertex function have to be separated into ela
We consider the two dimensional disordered Bose gas which present a metallic state at low temperatures. A simple model of an interacting Bose system in a random field is propose to consider the interaction effect on the transition in the metallic state.
Techniques based on $n$-particle irreducible effective actions can be used to study systems where perturbation theory does not apply. The main advantage, relative to other non-perturbative continuum methods, is that the hierarchy of integral equation