ترغب بنشر مسار تعليمي؟ اضغط هنا

The $j$-Multiplicity of Monomial Ideals

132   0   0.0 ( 0 )
 نشر من قبل Jack Jeffries
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a characterization of the j-multiplicity of a monomial ideal as the normalized volume of a polytopal complex. Our result is an extension of Teissiers volume-theoretic interpretation of the Hilbert-Samuel multiplicity for m-primary monomial ideals. We also give a description of the epsilon-multiplicity of a monomial ideal in terms of the volume of a region.

قيم البحث

اقرأ أيضاً

203 - Ezra Miller 2008
Scattered over the past few years have been several occurrences of simplicial complexes whose topological behavior characterize the Cohen-Macaulay property for quotients of polynomial rings by arbitrary (not necessarily squarefree) monomial ideals. T he purpose of this survey is to gather the developments into one location, with self-contained proofs, including direct combinatorial topological connections between them.
134 - Viviana Ene , Juergen Herzog , 2010
In this paper we study monomial ideals attached to posets, introduce generalized Hibi rings and investigate their algebraic and homological properties. The main tools to study these objects are Groebner basis theory, the concept of sortability due to Sturmfels and the theory of weakly polymatroidal ideals.
Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, s ay of period $g$ and degree $c$. For $n gg 0$ say [ f^I_J(n) = a_c(n)n^c + a_{c-1}(n)n^{c-1} + text{lower terms}, ] where for $i = 0, ldots, c$, $a_i colon mathbb{N} rt mathbb{Z}$ are periodic functions of period $g$ and $a_c eq 0$. In an earlier paper we (together with Herzog and Verma) proved that $dim I_n(J)/I^n$ is constant for $n gg 0$ and $a_c(-)$ is a constant. In this paper we prove that if $I$ is generated by some elements of the same degree and height $I geq 2$ then $a_{c-1}(-)$ is also a constant.
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of com bined spanning trees for cycles and cocycles (hedges) in the upper Koszul simplicial complexes of $I$ at lattice points in $mathbb{Z}^n$. The differentials in these sylvan resolutions are expressed as matrices whose entries are sums over lattice paths of weights determined combinatorially by sequences of hedges (hedgerows) along each lattice path. This combinatorics enters via an explicit matroidal expression for the Moore-Penrose pseudoinverses of the differentials in any CW complex as weighted averages of splittings defined by hedges. This Hedge Formula also yields a projection formula from CW chains to boundaries. The translation from Moore-Penrose combinatorics to free resolutions relies on Wall complexes, which construct minimal free resolutions of graded ideals from vertical splittings of Koszul bicomplexes. The algebra of Wall complexes applied to individual hedgerows yields explicit but noncanonical combinatorial minimal free resolutions of arbitrary monomial ideals in any characteristic.
We consider the fiber cone of monomial ideals. It is shown that for monomial ideals $Isubset K[x,y]$ of height $2$, generated by $3$ elements, the fiber cone $F(I)$ of $I$ is a hypersurface ring, and that $F(I)$ has positive depth for interesting cla sses of height $2$ monomial ideals $Isubset K[x,y]$, which are generated by $4$ elements. For these classes of ideals we also show that $F(I)$ is Cohen--Macaulay if and only if the defining ideal $J$ of $F(I)$ is generated by at most 3 elements. In all the cases a minimal set of generators of $J$ is determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا