ﻻ يوجد ملخص باللغة العربية
Scattered over the past few years have been several occurrences of simplicial complexes whose topological behavior characterize the Cohen-Macaulay property for quotients of polynomial rings by arbitrary (not necessarily squarefree) monomial ideals. The purpose of this survey is to gather the developments into one location, with self-contained proofs, including direct combinatorial topological connections between them.
We compute the minimal primary decomposition for completely squarefree lexsegment ideals. We show that critical squarefree monomial ideals are sequentially Cohen-Macaulay. As an application, we give a complete characterization of the completely squar
We characterize unmixed and Cohen-Macaulay edge-weighted edge ideals of very well-covered graphs. We also provide examples of oriented graphs which have unmixed and non-Cohen-Macaulay vertex-weighted edge ideals, while the edge ideal of their underly
For a partition $lambda$ of $n in {mathbb N}$, let $I^{rm Sp}_lambda$ be the ideal of $R=K[x_1,ldots,x_n]$ generated by all Specht polynomials of shape $lambda$. In the previous paper, the second author showed that if $R/I^{rm Sp}_lambda$ is Cohen-Ma
Let C be a uniform clutter and let I=I(C) be its edge ideal. We prove that if C satisfies the packing property (resp. max-flow min-cut property), then there is a uniform Cohen-Macaulay clutter C1 satisfying the packing property (resp. max-flow min-cu
Let $D$ be a weighted oriented graph, whose underlying graph is $G$, and let $I(D)$ be its edge ideal. If $G$ has no $3$-, $5$-, or $7$-cycles, or $G$ is K{o}nig, we characterize when $I(D)$ is unmixed. If $G$ has no $3$- or $5$-cycles, or $G$ is Kon