ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Cohen-Macaulay criteria for monomial ideals

303   0   0.0 ( 0 )
 نشر من قبل Ezra Miller
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Ezra Miller




اسأل ChatGPT حول البحث

Scattered over the past few years have been several occurrences of simplicial complexes whose topological behavior characterize the Cohen-Macaulay property for quotients of polynomial rings by arbitrary (not necessarily squarefree) monomial ideals. The purpose of this survey is to gather the developments into one location, with self-contained proofs, including direct combinatorial topological connections between them.



قيم البحث

اقرأ أيضاً

212 - Oana Olteanu 2011
We compute the minimal primary decomposition for completely squarefree lexsegment ideals. We show that critical squarefree monomial ideals are sequentially Cohen-Macaulay. As an application, we give a complete characterization of the completely squar efree lexsegment ideals which are sequentially Cohen-Macaulay and we also derive formulas for some homological invariants of this class of ideals.
We characterize unmixed and Cohen-Macaulay edge-weighted edge ideals of very well-covered graphs. We also provide examples of oriented graphs which have unmixed and non-Cohen-Macaulay vertex-weighted edge ideals, while the edge ideal of their underly ing graph is Cohen-Macaulay. This disproves a conjecture posed by Pitones, Reyes and Toledo.
For a partition $lambda$ of $n in {mathbb N}$, let $I^{rm Sp}_lambda$ be the ideal of $R=K[x_1,ldots,x_n]$ generated by all Specht polynomials of shape $lambda$. In the previous paper, the second author showed that if $R/I^{rm Sp}_lambda$ is Cohen-Ma caulay, then $lambda$ is either $(n-d,1,ldots,1),(n-d,d)$, or $(d,d,1)$, and the converse is true if ${rm char}(K)=0$. In this paper, we compute the Hilbert series of $R/I^{rm Sp}_lambda$ for $lambda=(n-d,d)$ or $(d,d,1)$. Hence, we get the Castelnuovo-Mumford regularity of $R/I^{rm Sp}_lambda$, when it is Cohen-Macaulay. In particular, $I^{rm Sp}_{(d,d,1)}$ has a $(d+2)$-linear resolution in the Cohen-Macaulay case.
Let C be a uniform clutter and let I=I(C) be its edge ideal. We prove that if C satisfies the packing property (resp. max-flow min-cut property), then there is a uniform Cohen-Macaulay clutter C1 satisfying the packing property (resp. max-flow min-cu t property) such that C is a minor of C1. For arbitrary edge ideals of clutters we prove that the normality property is closed under parallelizations. Then we show some applications to edge ideals and clutters which are related to a conjecture of Conforti and Cornuejols and to max-flow min-cut problems.
Let $D$ be a weighted oriented graph, whose underlying graph is $G$, and let $I(D)$ be its edge ideal. If $G$ has no $3$-, $5$-, or $7$-cycles, or $G$ is K{o}nig, we characterize when $I(D)$ is unmixed. If $G$ has no $3$- or $5$-cycles, or $G$ is Kon ig, we characterize when $I(D)$ is Cohen--Macaulay. We prove that $I(D)$ is unmixed if and only if $I(D)$ is Cohen--Macaulay when $G$ has girth greater than $7$ or $G$ is Konig and has no $4$-cycles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا