ﻻ يوجد ملخص باللغة العربية
In this paper we study monomial ideals attached to posets, introduce generalized Hibi rings and investigate their algebraic and homological properties. The main tools to study these objects are Groebner basis theory, the concept of sortability due to Sturmfels and the theory of weakly polymatroidal ideals.
In the present paper, we consider the problem when the toric ring arising from an integral cyclic polytope is Cohen-Macaulay by discussing Serres condition and we give a complete characterization when that is Gorenstein. Moreover, we study the normal
The $F$-signature is a numerical invariant defined by the number of free direct summands in the Frobenius push-forward, and it measures singularities in positive characteristic. It can be generalized by focussing on the number of non-free direct summ
We prove a characterization of the j-multiplicity of a monomial ideal as the normalized volume of a polytopal complex. Our result is an extension of Teissiers volume-theoretic interpretation of the Hilbert-Samuel multiplicity for m-primary monomial i
To any toric ideal $I_A$, encoded by an integer matrix $A$, we associate a matroid structure called {em the bouquet graph} of $A$ and introduce another toric ideal called {em the bouquet ideal} of $A$. We show how these objects capture the essential
Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph $G$, checks whether its