ترغب بنشر مسار تعليمي؟ اضغط هنا

Symbolic powers of monomial ideals

111   0   0.0 ( 0 )
 نشر من قبل Tony Puthenpurakal
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, say of period $g$ and degree $c$. For $n gg 0$ say [ f^I_J(n) = a_c(n)n^c + a_{c-1}(n)n^{c-1} + text{lower terms}, ] where for $i = 0, ldots, c$, $a_i colon mathbb{N} rt mathbb{Z}$ are periodic functions of period $g$ and $a_c eq 0$. In an earlier paper we (together with Herzog and Verma) proved that $dim I_n(J)/I^n$ is constant for $n gg 0$ and $a_c(-)$ is a constant. In this paper we prove that if $I$ is generated by some elements of the same degree and height $I geq 2$ then $a_{c-1}(-)$ is also a constant.

قيم البحث

اقرأ أيضاً

This paper is concerned with the question of whether geometric structures such as cell complexes can be used to simultaneously describe the minimal free resolutions of all powers of a monomial ideal. We provide a full answer in the case of square-fre e monomial ideals of projective dimension one, by introducing a combinatorial construction of a family of (cubical) cell complexes whose 1-skeletons are powers of a graph that supports the resolution of the ideal.
In this article, we prove that for several classes of graphs, the Castelnuovo-Mumford regularity of symbolic powers of their edge ideals coincide with that of their ordinary powers.
We give explicit criteria that imply the resurgence of a self-radical ideal in a regular ring is strictly smaller than its codimension, which in turn implies that the stable version of Harbournes conjecture holds for such ideals. This criterion is us ed to give several explicit families of such ideals, including the defining ideals of space monomial curves. Other results generalize known theorems concerning when the third symbolic power is in the square of an ideal, and a strong resurgence bound for some classes of space monomial curves.
Let $S=K[x_1,ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $Isubset S$ a squarefree monomial ideal. In the present paper we are interested in the monomials $u in S$ belonging to the socle $Soc(S/I^{k})$ of $S/I^{k}$, i.e., $u otin I^{k}$ and $ux_{i} in I^{k}$ for $1 leq i leq n$. We prove that if a monomial $x_1^{a_1}cdots x_n^{a_n}$ belongs to $Soc(S/I^{k})$, then $a_ileq k-1$ for all $1 leq i leq n$. We then discuss squarefree monomial ideals $I subset S$ for which $x_{[n]}^{k-1} in Soc(S/I^{k})$, where $x_{[n]} = x_{1}x_{2}cdots x_{n}$. Furthermore, we give a combinatorial characterization of finite graphs $G$ on $[n] = {1, ldots, n}$ for which $depth S/(I_{G})^{2}=0$, where $I_{G}$ is the edge ideal of $G$.
215 - James Lewis 2020
We investigate the rational powers of ideals. We find that in the case of monomial ideals, the canonical indexing leads to a characterization of the rational powers yielding that symbolic powers of squarefree monomial ideals are indeed rational power s themselves. Using the connection with symbolic powers techniques, we use splittings to show the convergence of depths and normalized Castelnuovo-Mumford regularities. We show the convergence of Stanley depths for rational powers, and as a consequence of this we show the before-now unknown convergence of Stanley depths of integral closure powers. In addition, we show the finiteness of asymptotic associated primes, and we find that the normalized lengths of local cohomology modules converge for rational powers, and hence for symbolic powers of squarefree monomial ideals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا