ترغب بنشر مسار تعليمي؟ اضغط هنا

Motional Entanglement with Trapped Ions and a Nanomechanical Resonator

272   0   0.0 ( 0 )
 نشر من قبل Fernando Semiao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the entangling power of a nanoelectromechanical system (NEMS) simultaneously interacting with two separately trapped ions. To highlight this entangling capability, we consider a special regime where the ion-ion coupling does not generate entanglement in the system, and any resulting entanglement will be the result of the NEMS acting as an entangling device. We study the dynamical behavior of the bipartite NEMS-induced ion-ion entanglement as well as the tripartite entanglement of the whole system (ions+NEMS). We found some quite remarkable phenomena in this hybrid system. For instance, the two trapped ions initially uncorrelated and prepared in coherent states can become entangled by interacting with a nanoelectromechanical resonator (also prepared in a coherent state) as soon as the ion-NEMS coupling achieve a certain value, and this can be controlled by external voltage gate on the NEMS device.



قيم البحث

اقرأ أيضاً

We suggest a new type of nano-electromechanical resonator, the functionality of which is based on a magnetic field induced deflection of an appropriate cantilever that oscillates between nitrogen vacancy (NV) spins in daimond. Specifically, we consid er a Si(100) cantilever coated with a thin magnetic Ni film. Magnetoelastic stress and magnetic-field induced torque are utilized to induce a controlled cantilever deflection. It is shown that, depending on the value of the system parameters, the induced asymmetry of the cantilever deflection substantially modifies the characteristics of the system. In particular, the coupling strength between the NV spins and the degree of entanglement can be controlled through magnetoelastic stress and magnetic-field induced torque effects. Our theoretical proposal can be implemented experimentally with the potential of increasing several times the coupling strength between the NV spins as compared to the maximal coupling strength reported before in P. Rabl, et al. Phys. Rev. B 79, 041302(R) (2009).
We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 microns above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300 plus or minus 30 per second for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.
We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep stro ng coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions.
Quantum simulation of spin models can provide insight into complex problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. Here we study non-equilibrium, quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of $^9$Be$^+$ ions in a Penning trap. We verify entanglement in the form of spin-squeezed states for up to 219 ions, directly observing 4.0$pm$0.9 dB of spectroscopic enhancement. We also observe evidence of non-Gaussian, over-squeezed states in the full counting statistics. We find good agreement with ab-initio theory that includes competition between entanglement and decoherence, laying the groundwork for simulations of the transverse-field Ising model with variable-range interactions, for which numerical solutions are, in general, classically intractable.
Entangling gates in trapped-ion quantum computing have primarily targeted stationary ions with initial motional distributions that are thermal and close to the ground state. However, future systems will likely incur significant non-thermal excitation due to, e.g., ion transport, longer operational times, and increased spatial extent of the trap array. In this paper, we analyze the impact of such coherent motional excitation on entangling-gate error by performing simulations of Molmer-Sorenson (MS) gates on a pair of trapped-ion qubits with both thermal and coherent excitation present in a shared motional mode at the start of the gate. We discover that a small amount of coherent displacement dramatically erodes gate performance in the presence of experimental noise, and we demonstrate that applying only limited control over the phase of the displacement can suppress this error. We then use experimental data from transported ions to analyze the impact of coherent displacement on MS-gate error under realistic conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا