ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement between nitrogen vacancy spins in diamond controlled by a nanomechanical resonator

127   0   0.0 ( 0 )
 نشر من قبل Alexander Sukhov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest a new type of nano-electromechanical resonator, the functionality of which is based on a magnetic field induced deflection of an appropriate cantilever that oscillates between nitrogen vacancy (NV) spins in daimond. Specifically, we consider a Si(100) cantilever coated with a thin magnetic Ni film. Magnetoelastic stress and magnetic-field induced torque are utilized to induce a controlled cantilever deflection. It is shown that, depending on the value of the system parameters, the induced asymmetry of the cantilever deflection substantially modifies the characteristics of the system. In particular, the coupling strength between the NV spins and the degree of entanglement can be controlled through magnetoelastic stress and magnetic-field induced torque effects. Our theoretical proposal can be implemented experimentally with the potential of increasing several times the coupling strength between the NV spins as compared to the maximal coupling strength reported before in P. Rabl, et al. Phys. Rev. B 79, 041302(R) (2009).



قيم البحث

اقرأ أيضاً

In this paper we study the time evolution of the entanglement between two remote NV Centers (nitrogen vacancy in diamond) connected by a dual-mode nanomechanical resonator with magnetic tips on both sides. Calculating the negativity as a measure for the entanglement, we find that the entanglement between two spins oscillates with time and can be manipulated by varying the parameters of the system. We observed the phe- nomenon of a sudden death and the periodic revivals of entanglement in time. For the study of quantum deco- herence, we implement a Lindblad master equation. In spite of its complexity, the model is analytically solvable under fairly reasonable assumptions, and shows that the decoherence influences the entanglement, the sudden death, and the revivals in time.
Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromech anical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.
We theoretically analyse the cooling dynamics of a high-Q mode of a mechanical resonator, when the structure is also an optical cavity and is coupled with a NV center. The NV center is driven by a laser and interacts with the cavity photon field and with the strain field of the mechanical oscillator, while radiation pressure couples mechanical resonator and cavity field. Starting from the full master equation we derive the rate equation for the mechanical resonators motion, whose coefficients depend on the system parameters and on the noise sources. We then determine the cooling regime, the cooling rate, the asymptotic temperatures, and the spectrum of resonance fluorescence for experimentally relevant parameter regimes. For these parameters, we consider an electronic transition, whose linewidth allows one to perform sideband cooling, and show that the addition of an optical cavity in general does not improve the cooling efficiency. We further show that pure dephasing of the NV centers electronic transitions can lead to an improvement of the cooling efficiency.
102 - Jiwon Yun , Kiho Kim , 2019
We experimentally demonstrate high degree of polarization of 13C nuclear spins weakly interacting with nitrogen-vacancy (NV) centers in diamond. We combine coherent microwave excitation pulses with optical illumination to provide controlled relaxatio n and achieve a polarity-tunable, fast nuclear polarization of degree higher than 85% at room temperature for remote 13C nuclear spins exhibiting hyperfine interaction strength with NV centers of the order of 600 kHz. We show with the aid of numerical simulation that the anisotropic hyperfine tensor components naturally provide a route to control spin mixing parameter so that highly efficient nuclear polarization is enabled through careful tuning of nuclear quantization axis by external magnetic field. We further discuss spin dynamics and wide applicability of this method to various target 13C nuclear spins around the NV center electron spin. The proposed control method demonstrates an efficient and versatile route to realize, for example, high-fidelity spin register initialization and quantum metrology using nuclear spin resources in solids.
We study the entangling power of a nanoelectromechanical system (NEMS) simultaneously interacting with two separately trapped ions. To highlight this entangling capability, we consider a special regime where the ion-ion coupling does not generate ent anglement in the system, and any resulting entanglement will be the result of the NEMS acting as an entangling device. We study the dynamical behavior of the bipartite NEMS-induced ion-ion entanglement as well as the tripartite entanglement of the whole system (ions+NEMS). We found some quite remarkable phenomena in this hybrid system. For instance, the two trapped ions initially uncorrelated and prepared in coherent states can become entangled by interacting with a nanoelectromechanical resonator (also prepared in a coherent state) as soon as the ion-NEMS coupling achieve a certain value, and this can be controlled by external voltage gate on the NEMS device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا