ﻻ يوجد ملخص باللغة العربية
We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep strong coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions.
Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with
We present protocols for the generation of high-dimensional entangled states of anharmonic oscillators by means of coherent manipulation of light-matter systems in the ultrastrong coupling regime. Our protocols consider a pair of ultrastrong coupled
The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic mode. We propose a method to perform a quantum simulation of the quantum Rabi model introducing a novel implementation of the two-level system, p
We discuss the simulation of non-perturbative cavity-QED effects using systems of trapped ions. Specifically, we address the implementation of extended Dicke models with both collective dipole-field and direct dipole-dipole interactions, which repres
We propose a method of simulating efficiently many-body interacting fermion lattice models in trapped ions, including highly nonlinear interactions in arbitrary spatial dimensions and for arbitrarily distant couplings. We map products of fermionic op