ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the well-posedness of backward or forward stochastic differential equations whose law is constrained to live in an a priori given (smooth enough) set and which is reflected along the corresponding normal vector. We also study the associated interacting particle system reflected in mean field and asymptotically described by such equations. The case of particles submitted to a common noise as well as the asymptotic system is studied in the forward case. Eventually, we connect the forward and backward stochastic differential equations with normal constraints in law with partial differential equations stated on the Wasserstein space and involving a Neumann condition in the forward case and an obstacle in the backward one.
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection an
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftyt
The connection between forward backward doubly stochastic differential equations and the optimal filtering problem is established without using the Zakais equation. The solutions of forward backward doubly stochastic differential equations are expres