ﻻ يوجد ملخص باللغة العربية
Mathematical mean-field approaches play an important role in different fields of Physics and Chemistry, but have found in recent works also their application in Economics, Finance and Game Theory. The objective of our paper is to investigate a special mean-field problem in a purely stochastic approach: for the solution $(Y,Z)$ of a mean-field backward stochastic differential equation driven by a forward stochastic differential of McKean--Vlasov type with solution $X$ we study a special approximation by the solution $(X^N,Y^N,Z^N)$ of some decoupled forward--backward equation which coefficients are governed by $N$ independent copies of $(X^N,Y^N,Z^N)$. We show that the convergence speed of this approximation is of order $1/sqrt{N}$. Moreover, our special choice of the approximation allows to characterize the limit behavior of $sqrt{N}(X^N-X,Y^N-Y,Z^N-Z)$. We prove that this triplet converges in law to the solution of some forward--backward stochastic differential equation of mean-field type, which is not only governed by a Brownian motion but also by an independent Gaussian field.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, cor
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftyt
This paper is concerned with the switching game of a one-dimensional backward stochastic differential equation (BSDE). The associated Bellman-Isaacs equation is a system of matrix-valued BSDEs living in a special unbounded convex domain with reflecti