ترغب بنشر مسار تعليمي؟ اضغط هنا

Correspondence on Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band by M. Dobrowolska et al

498   0   0.0 ( 0 )
 نشر من قبل Kevin Edmonds
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Comment on the recent Nature Materials article by M. Dobrowolska et al., arXiv:1203.1852. We present experimental data showing that the Curie temperature and conductivity of high quality (Ga,Mn)As samples are maximized at low compensation, and thus the magnetic order in (Ga,Mn)As is not consistent with the isolated impurity band scenario.



قيم البحث

اقرأ أيضاً

The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bea ring on its Curie temperature TC. It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band. In this paper we combine results of channeling experiments, which measure the concentrations both of Mn ions and of holes relevant to the ferromagnetic order, with magnetization, transport, and magneto-optical data to address this issue. Taken together, these measurements provide strong evidence that it is the location of the Fermi level within the impurity band that determines TC through determining the degree of hole localization. This finding differs drastically from the often accepted view that TC is controlled by valence band holes, thus opening new avenues for achieving higher values of TC.
Although we seriously disagree with many of the points raised in the comment by Edmonds et al., we feel that it is valuable and timely, since comparison of this comment and our paper serves to underscore an important property of the ferromagnetic semiconductor (Ga,Mn)As in thin film form.
We discuss the character of states near the Fermi level in Mn doped GaAs, as revealed by a survey of dc transport and optical studies over a wide range of Mn concentrations. A thermally activated valence band contribution to dc transport, a mid-infra red peak at energy hbar omega approx 200 meV in the ac- conductivity, and the hot photoluminescence spectra indicate the presence of an impurity band in low doped (<<1% Mn) insulating GaAs:Mn materials. Consistent with the implications of this picture, both the impurity band ionization energy inferred from the dc transport and the position of the mid-infrared peak move to lower energies and the peak broadens with increasing Mn concentration. In metallic materials with > 2% doping, no traces of Mn-related activated contribution can be identified in dc-transport, suggesting that the impurity band has merged with the valence band. No discrepancies with this perception are found when analyzing optical measurements in the high-doped GaAs:Mn. A higher energy (hbar omega approx 250 meV) mid-infrared feature which appears in the metallic samples is associated with inter-valence band transitions. Its red-shift with increased doping can be interpreted as a consequence of increased screening which narrows the localized-state valence-band tails and weakens higher energy transition amplitudes. Our examination of the dc and ac transport characteristics of GaAs:Mn is accompanied by comparisons with its shallow acceptor counterparts, confirming the disordered valence band picture of high-doped metallic GaAs:Mn material.
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the 2D-3D phase boundary. The increase in Tc, due to the removal of interstitial Mn by post growth annealing, is counteracted by a second process which reduces Tc and which is more effective at higher annealing temperatures. Our results show that it is necessary to optimize the growth parameters and post growth annealing procedure to obtain the highest Tc.
79 - T. Wojtowicz , W.L. Lim , X. Liu 2003
The effect of modulation doping by Be on the ferromagnetic properties of Ga(1-x)Mn(x)As is investigated in Ga(1-x)Mn(x)As/Ga(1-y)Al(y)As heterojunctions and quantum wells. Introducing Be acceptors into the Ga(1-y)Al(y)As barriers leads to an increase of the Curie temperature T_C of Ga(1-x)Mn(x)As, from 70 K in undoped structures to over 100 K with the modulation doping. This increase is qualitatively consistent with a multi-band mean field theory simulation of carrier-mediated ferromagnetism. An important feature is that the increase of T_C occurs only in those structures where the modulation doping is introduced after the deposition of the magnetic layer, but not when the Be-doped layer is grown first. This behavior is expected from the strong sensitivity of Mn interstitial formation to the value of the Fermi energy during growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا