ﻻ يوجد ملخص باللغة العربية
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the 2D-3D phase boundary. The increase in Tc, due to the removal of interstitial Mn by post growth annealing, is counteracted by a second process which reduces Tc and which is more effective at higher annealing temperatures. Our results show that it is necessary to optimize the growth parameters and post growth annealing procedure to obtain the highest Tc.
We report Curie temperatures up to 150 K in annealed Ga1-xMnxAs epilayers grown with a relatively low As:Ga beam equivalent pressure ratio. A variety of measurements (magnetization, Hall effect, magnetic circular dichroism and Raman scattering) show
The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormal
We show that effective electrical control of the magnetic properties in the ferromagnetic semiconductor (Ga,Mn)As is possible using the strain induced by a piezoelectric actuator even in the limit of high doping levels and high Curie temperatures, wh
(Ga,Mn)As and related diluted magnetic semiconductors play a major role in spintronics research because of their potential to combine ferromagnetism and semiconducting properties in one physical system. Ferromagnetism requires ~1-10% of substitutiona
We report a clear correspondence between changes in the Curie temperature and carrier density upon annealing in epitaxially grown (Ga,Mn)As layers with thicknesses in the range between 5 nm and 20 nm. The changes are dependent on the layer thickness,