ﻻ يوجد ملخص باللغة العربية
The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bearing on its Curie temperature TC. It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band. In this paper we combine results of channeling experiments, which measure the concentrations both of Mn ions and of holes relevant to the ferromagnetic order, with magnetization, transport, and magneto-optical data to address this issue. Taken together, these measurements provide strong evidence that it is the location of the Fermi level within the impurity band that determines TC through determining the degree of hole localization. This finding differs drastically from the often accepted view that TC is controlled by valence band holes, thus opening new avenues for achieving higher values of TC.
Comment on the recent Nature Materials article by M. Dobrowolska et al., arXiv:1203.1852. We present experimental data showing that the Curie temperature and conductivity of high quality (Ga,Mn)As samples are maximized at low compensation, and thus t
Although we seriously disagree with many of the points raised in the comment by Edmonds et al., we feel that it is valuable and timely, since comparison of this comment and our paper serves to underscore an important property of the ferromagnetic semiconductor (Ga,Mn)As in thin film form.
We discuss the character of states near the Fermi level in Mn doped GaAs, as revealed by a survey of dc transport and optical studies over a wide range of Mn concentrations. A thermally activated valence band contribution to dc transport, a mid-infra
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the
(Ga$_{1-x}$,Fe$_x$)Sb is one of the promising ferromagnetic semiconductors for spintronic device applications because its Curie temperature ($T_{rm C}$) is above 300 K when the Fe concentration $x$ is equal to or higher than ~0.20. However, the origi