ﻻ يوجد ملخص باللغة العربية
In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small grain 1.5 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. Results of the muSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing (BCP) performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR. The muSR line width observed in ZF-muSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. An upper bound for the upper critical field Hc2 of these cutouts is found.
Point contact tunneling (PCT) and low energy muon spin rotation (LE-muSR) are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtereing te
Measurements of the in-plane magnetic field penetration depth lambda_{ab} in Fe-based superconductors with the nominal composition SmFeAsO_0.85 (T_csimeq52K) and NdFeAsO_0.85 (T_csimeq51K) were carried out by means of muon-spin-rotation. The absolute
In a recent article Tran et al. [Phys. Rev.B 78, 172505 (2008)] report on the result of the muon-spin rotation (muSR) measurements of Mo_3Sb_7 superconductor. Based on the analysis of the temperature and the magnetic field dependence of the Gaussian
Point contact tunneling (PCT) spectroscopy measurements are reported over wide areas of cm-sized cut outs from niobium superconducting RF cavities. A comparison is made between a high-quality, conventionally processed (CP) cavity with a high field Q
We present an analysis of the Nb3Sn surface layers grown on a bulk niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz cavities. Tunneling spectroscopy reveals a well-developed,