ﻻ يوجد ملخص باللغة العربية
We consider the problem of characterizing entrywise functions that preserve the cone of positive definite matrices when applied to every off-diagonal element. Our results extend theorems of Schoenberg [Duke Math. J. 9], Rudin [Duke Math. J. 26], Christensen and Ressel [Trans. Amer. Math. Soc., 243], and others, where similar problems were studied when the function is applied to all elements, including the diagonal ones. It is shown that functions that are guaranteed to preserve positive definiteness cannot at the same time induce sparsity, i.e., set elements to zero. These results have important implications for the regularization of positive definite matrices, where functions are often applied to only the off-diagonal elements to obtain sparse matrices with better properties (e.g., Markov random field/graphical model structure, better condition number). As a particular case, it is shown that emph{soft-thresholding}, a commonly used operation in modern high-dimensional probability and statistics, is not guaranteed to maintain positive definiteness, even if the original matrix is sparse. This result has a deep connection to graphs, and in particular, to the class of trees. We then proceed to fully characterize functions which do preserve positive definiteness. This characterization is in terms of absolutely monotonic functions and turns out to be quite different from the case when the function is also applied to diagonal elements. We conclude by giving bounds on the condition number of a matrix which guarantee that the regularized matrix is positive definite.
Positive definite (p.d.) matrices arise naturally in many areas within mathematics and also feature extensively in scientific applications. In modern high-dimensional applications, a common approach to finding sparse positive definite matrices is to
The main result of the paper gives criteria for extendibility of sesquilinear form-valued mappings defined on symmetric subsets of *-semigroups to positive definite ones. By specifying this we obtain new solutions of: * the truncated complex moment
Let $fin mathbb{R}[x, y, z]$ be a quadratic polynomial that depends on each variable and that does not have the form $g(h(x)+k(y)+l(z))$. Let $A, B, C$ be compact sets in $mathbb{R}$. Suppose that $dim_H(A)+dim_H(B)+dim_H(C)>2$, then we prove that th
The class of generating functions for completely monotone sequences (moments of finite positive measures on $[0,1]$) has an elegant characterization as the class of Pick functions analytic and positive on $(-infty,1)$. We establish this and another s
Let $phi(x, y)colon mathbb{R}^dtimes mathbb{R}^dto mathbb{R}$ be a function. We say $phi$ is a Mattila--Sj{o}lin type function of index $gamma$ if $gamma$ is the smallest number satisfying the property that for any compact set $Esubset mathbb{R}^d$,