ترغب بنشر مسار تعليمي؟ اضغط هنا

Functions preserving positive definiteness for sparse matrices

91   0   0.0 ( 0 )
 نشر من قبل Dominique Guillot
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of characterizing entrywise functions that preserve the cone of positive definite matrices when applied to every off-diagonal element. Our results extend theorems of Schoenberg [Duke Math. J. 9], Rudin [Duke Math. J. 26], Christensen and Ressel [Trans. Amer. Math. Soc., 243], and others, where similar problems were studied when the function is applied to all elements, including the diagonal ones. It is shown that functions that are guaranteed to preserve positive definiteness cannot at the same time induce sparsity, i.e., set elements to zero. These results have important implications for the regularization of positive definite matrices, where functions are often applied to only the off-diagonal elements to obtain sparse matrices with better properties (e.g., Markov random field/graphical model structure, better condition number). As a particular case, it is shown that emph{soft-thresholding}, a commonly used operation in modern high-dimensional probability and statistics, is not guaranteed to maintain positive definiteness, even if the original matrix is sparse. This result has a deep connection to graphs, and in particular, to the class of trees. We then proceed to fully characterize functions which do preserve positive definiteness. This characterization is in terms of absolutely monotonic functions and turns out to be quite different from the case when the function is also applied to diagonal elements. We conclude by giving bounds on the condition number of a matrix which guarantee that the regularized matrix is positive definite.



قيم البحث

اقرأ أيضاً

Positive definite (p.d.) matrices arise naturally in many areas within mathematics and also feature extensively in scientific applications. In modern high-dimensional applications, a common approach to finding sparse positive definite matrices is to threshold their small off-diagonal elements. This thresholding, sometimes referred to as hard-thresholding, sets small elements to zero. Thresholding has the attractive property that the resulting matrices are sparse, and are thus easier to interpret and work with. In many applications, it is often required, and thus implicitly assumed, that thresholded matrices retain positive definiteness. In this paper we formally investigate the algebraic properties of p.d. matrices which are thresholded. We demonstrate that for positive definiteness to be preserved, the pattern of elements to be set to zero has to necessarily correspond to a graph which is a union of disconnected complete components. This result rigorously demonstrates that, except in special cases, positive definiteness can be easily lost. We then proceed to demonstrate that the class of diagonally dominant matrices is not maximal in terms of retaining positive definiteness when thresholded. Consequently, we derive characterizations of matrices which retain positive definiteness when thresholded with respect to important classes of graphs. In particular, we demonstrate that retaining positive definiteness upon thresholding is governed by complex algebraic conditions.
The main result of the paper gives criteria for extendibility of sesquilinear form-valued mappings defined on symmetric subsets of *-semigroups to positive definite ones. By specifying this we obtain new solutions of: * the truncated complex moment problem, * the truncated multidimensional trigonometric moment problem, * the truncated two-sided complex moment problem, as well as characterizations of unbounded subnormality and criteria for the existence of unitary power dilation.
Let $fin mathbb{R}[x, y, z]$ be a quadratic polynomial that depends on each variable and that does not have the form $g(h(x)+k(y)+l(z))$. Let $A, B, C$ be compact sets in $mathbb{R}$. Suppose that $dim_H(A)+dim_H(B)+dim_H(C)>2$, then we prove that th e image set $f(A, B, C)$ is of positive Lebesgue measure. Our proof is based on a result due to Eswarathasan, Iosevich, and Taylor (Advances in Mathematics, 2011), and a combinatorial argument from the finite field model.
The class of generating functions for completely monotone sequences (moments of finite positive measures on $[0,1]$) has an elegant characterization as the class of Pick functions analytic and positive on $(-infty,1)$. We establish this and another s uch characterization and develop a variety of consequences. In particular, we characterize generating functions for moments of convex and concave probability distribution functions on $[0,1]$. Also we provide a simple analytic proof that for any real $p$ and $r$ with $p>0$, the Fuss-Catalan or Raney numbers $frac{r}{pn+r}binom{pn+r}{n}$, $n=0,1,ldots$ are the moments of a probability distribution on some interval $[0,tau]$ {if and only if} $pge1$ and $pge rge 0$. The same statement holds for the binomial coefficients $binom{pn+r-1}n$, $n=0,1,ldots$.
Let $phi(x, y)colon mathbb{R}^dtimes mathbb{R}^dto mathbb{R}$ be a function. We say $phi$ is a Mattila--Sj{o}lin type function of index $gamma$ if $gamma$ is the smallest number satisfying the property that for any compact set $Esubset mathbb{R}^d$, $phi(E, E)$ has a non-empty interior whenever $dim_H(E)>gamma$. The usual distance function, $phi(x, y)=|x-y|$, is conjectured to be a Mattila--Sj{o}lin type function of index $frac{d}{2}$. In the setting of finite fields $mathbb{F}_q$, this definition is equivalent to the statement that $phi(E, E)=mathbb{F}_q$ whenever $|E|gg q^{gamma}$. The main purpose of this paper is to prove the existence of such functions with index $frac{d}{2}$ in the vector space $mathbb{F}_q^d$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا