ﻻ يوجد ملخص باللغة العربية
Let $phi(x, y)colon mathbb{R}^dtimes mathbb{R}^dto mathbb{R}$ be a function. We say $phi$ is a Mattila--Sj{o}lin type function of index $gamma$ if $gamma$ is the smallest number satisfying the property that for any compact set $Esubset mathbb{R}^d$, $phi(E, E)$ has a non-empty interior whenever $dim_H(E)>gamma$. The usual distance function, $phi(x, y)=|x-y|$, is conjectured to be a Mattila--Sj{o}lin type function of index $frac{d}{2}$. In the setting of finite fields $mathbb{F}_q$, this definition is equivalent to the statement that $phi(E, E)=mathbb{F}_q$ whenever $|E|gg q^{gamma}$. The main purpose of this paper is to prove the existence of such functions with index $frac{d}{2}$ in the vector space $mathbb{F}_q^d$.
Let $fin mathbb{R}[x, y, z]$ be a quadratic polynomial that depends on each variable and that does not have the form $g(h(x)+k(y)+l(z))$. Let $A, B, C$ be compact sets in $mathbb{R}$. Suppose that $dim_H(A)+dim_H(B)+dim_H(C)>2$, then we prove that th
The first purpose of this paper is to provide new finite field extension theorems for paraboloids and spheres. By using the unusual good Fourier transform of the zero sphere in some specific dimensions, which has been discovered recently in the work
We prove a Roth type theorem for polynomial corners in the finite field setting. Let $phi_1$ and $phi_2$ be two polynomials of distinct degree. For sufficiently large primes $p$, any subset $ A subset mathbb F_p times mathbb F_p$ with $ lvert Arvert
Let $A$ be a compact set in $mathbb{R}$, and $E=A^dsubset mathbb{R}^d$. We know from the Mattila-Sjolins theorem if $dim_H(A)>frac{d+1}{2d}$, then the distance set $Delta(E)$ has non-empty interior. In this paper, we show that the threshold $frac{d+1}{2d}$ can be improved whenever $dge 5$.
In this paper we study the boundedness of extension operators associated with spheres in vector spaces over finite fields.In even dimensions, we estimate the number of incidences between spheres and points in the translated set from a subset of spher