ﻻ يوجد ملخص باللغة العربية
Let $fin mathbb{R}[x, y, z]$ be a quadratic polynomial that depends on each variable and that does not have the form $g(h(x)+k(y)+l(z))$. Let $A, B, C$ be compact sets in $mathbb{R}$. Suppose that $dim_H(A)+dim_H(B)+dim_H(C)>2$, then we prove that the image set $f(A, B, C)$ is of positive Lebesgue measure. Our proof is based on a result due to Eswarathasan, Iosevich, and Taylor (Advances in Mathematics, 2011), and a combinatorial argument from the finite field model.
Let $phi(x, y)colon mathbb{R}^dtimes mathbb{R}^dto mathbb{R}$ be a function. We say $phi$ is a Mattila--Sj{o}lin type function of index $gamma$ if $gamma$ is the smallest number satisfying the property that for any compact set $Esubset mathbb{R}^d$,
The first purpose of this paper is to provide new finite field extension theorems for paraboloids and spheres. By using the unusual good Fourier transform of the zero sphere in some specific dimensions, which has been discovered recently in the work
We prove a point-wise and average bound for the number of incidences between points and hyper-planes in vector spaces over finite fields. While our estimates are, in general, sharp, we observe an improvement for product sets and sets contained in a s
We prove a Roth type theorem for polynomial corners in the finite field setting. Let $phi_1$ and $phi_2$ be two polynomials of distinct degree. For sufficiently large primes $p$, any subset $ A subset mathbb F_p times mathbb F_p$ with $ lvert Arvert
For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit