ﻻ يوجد ملخص باللغة العربية
Positive definite (p.d.) matrices arise naturally in many areas within mathematics and also feature extensively in scientific applications. In modern high-dimensional applications, a common approach to finding sparse positive definite matrices is to threshold their small off-diagonal elements. This thresholding, sometimes referred to as hard-thresholding, sets small elements to zero. Thresholding has the attractive property that the resulting matrices are sparse, and are thus easier to interpret and work with. In many applications, it is often required, and thus implicitly assumed, that thresholded matrices retain positive definiteness. In this paper we formally investigate the algebraic properties of p.d. matrices which are thresholded. We demonstrate that for positive definiteness to be preserved, the pattern of elements to be set to zero has to necessarily correspond to a graph which is a union of disconnected complete components. This result rigorously demonstrates that, except in special cases, positive definiteness can be easily lost. We then proceed to demonstrate that the class of diagonally dominant matrices is not maximal in terms of retaining positive definiteness when thresholded. Consequently, we derive characterizations of matrices which retain positive definiteness when thresholded with respect to important classes of graphs. In particular, we demonstrate that retaining positive definiteness upon thresholding is governed by complex algebraic conditions.
We consider the problem of characterizing entrywise functions that preserve the cone of positive definite matrices when applied to every off-diagonal element. Our results extend theorems of Schoenberg [Duke Math. J. 9], Rudin [Duke Math. J. 26], Chri
The main result of the paper gives criteria for extendibility of sesquilinear form-valued mappings defined on symmetric subsets of *-semigroups to positive definite ones. By specifying this we obtain new solutions of: * the truncated complex moment
The James-Stein estimator is an estimator of the multivariate normal mean and dominates the maximum likelihood estimator (MLE) under squared error loss. The original work inspired great interest in developing shrinkage estimators for a variety of pro
We investigate eigenvectors of rank-one deformations of random matrices $boldsymbol B = boldsymbol A + theta boldsymbol {uu}^*$ in which $boldsymbol A in mathbb R^{N times N}$ is a Wigner real symmetric random matrix, $theta in mathbb R^+$, and $bold
Covariance matrix testing for high dimensional data is a fundamental problem. A large class of covariance test statistics based on certain averaged spectral statistics of the sample covariance matrix are known to obey central limit theorems under the