ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared spectroscopy of the super star cluster in NGC1705

152   0   0.0 ( 0 )
 نشر من قبل Fabrice Martins
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Martins




اسأل ChatGPT حول البحث

We study the near-infrared properties of the super star cluster NGC1750-1 in order to constrain its spatial extent, its stellar population and its age. We use adaptive optics assisted integral field spectroscopy with SINFONI on the VLT. We estimate the spatial extent of the cluster and extract its K-band spectrum from which we constrain the age of the dominant stellar population. Our observations have an angular resolution of about 0.11, providing an upper limit on the cluster radius of 2.85+/-0.50 pc depending on the assumed distance. The K-band spectrum is dominated by strong CO absorption bandheads typical of red supergiants. Its spectral type is equivalent to a K4-5I star. Using evolutionary tracks from the Geneva and Utrecht groups, we determine an age of 12+/-6 Myr. The large uncertainty is rooted in the large difference between the Geneva and Utrecht tracks in the red supergiants regime. The absence of ionized gas lines in the K-band spectrum is consistent with the absence of O and/or Wolf-Rayet stars in the cluster, as expected for the estimated age.



قيم البحث

اقرأ أيضاً

Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks < 7 mag) in GLIMPSE and 2MASS images. A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 Msun to 15 Msun. Two red supergiants are located at Galactic coordinates (l,b)=(16.7deg,-0.63deg) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b)=(49.3deg,+0.72deg) and at a distance of ~7.0 kpc. Spectroscopic analysis of the brightest stars of detected overdensities and studies of interstellar extinction along their line of sights are fundamental to distinguish regions of low extinction from actual stellar clusters. The census of young star clusters containing red supergiants is incomplete; in the existing all-sky near-infrared surveys, they can be identified as overdensities of bright stars with infrared color-magnitude diagrams characterized by gaps.
The inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R~50,000) near-infrared spectra of three red supergiants in the young Scutum cluster RSGC2. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to identify several tens of atomic and molecular lines suitable for chemical abundance determinations. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and other iron-peak elements such as V, Cr, Ni, of alpha (O, Mg, Si, Ca and Ti) and other light elements (C, N, Na, Al, K, Sc), and of some s-process elements (Y, Sr). We found iron abundances between half and one third solar and solar-scaled [X/Fe] abundance patterns of iron-peak, alpha and most of the light elements, consistent with a thin-disk chemistry. We found a depletion of [C/Fe] and enhancement of [N/Fe], consistent with CN burning, and low 12C/13C abundance ratios (between 9 and 11), requiring extra-mixing processes in the stellar interiors during the post-main sequence evolution. Finally, we found a slight [Sr/Fe] enhancement and a slight [Y/Fe] depletion (by a factor of <=2), with respect to solar.
We conducted systematic observations of the HI Br-alpha line (4.05 micron) and the polycyclic aromatic hydrocarbon (PAH) feature (3.3 micron) in 50 nearby (z<0.3) ultraluminous infrared galaxies (ULIRGs) with AKARI. The Br-alpha line is predicted to be the brightest among the HI lines under high dust-extinction conditions (A_V>15 mag). The Br-alpha line traces ionizing photons from OB stars and so is used as an indicator of star formation on the assumption of the initial mass function. We detected the Br-alpha line in 33 ULIRGs. The luminosity of the line (L_BrA) correlates well with that of the 3.3 micron PAH emission (L_3.3). Thus we utilize L_3.3 as an indicator of star formation in fainter objects where the Br-alpha line is undetected. The mean L_BrA/L_IR ratio in LINERs/Seyferts is significantly lower than that in HII galaxies. This difference is reconfirmed with the L_3.3/L_IR ratio in the larger sample (46 galaxies). Using the ratios, we estimate that the contribution of starburst in LINERs/Seyferts is ~67%, and active galactic nuclei contribute to the remaining ~33%. However, comparing the number of ionizing photons, Q_BrA, derived from L_BrA with that, Q_IR, expected from star formation rate required to explain L_IR, we find that the mean Q_BrA/Q_IR ratio is only 55.5+/-7.5% even in HII galaxies which are thought to be energized by pure starburst. This deficit of ionizing photons traced by the Br-alpha line is significant even taking heavy dust extinction into consideration. We propose that dust within HII regions absorbs a significant fraction of ionizing photons.
To reveal the origins of diffuse H-alpha emissions observed around the Herbig star MWC 1080, we have performed a high-resolution near-infrared (NIR) spectroscopic observation using the Immersion GRating INfrared Spectrograph (IGRINS). In the NIR H an d K bands, we detected various emission lines (six hydrogen Brackett lines, seven H2 lines, and an [Fe II] line) and compared their spatial locations with the optical (H-alpha and [S II]) and radio (13CO and CS) line maps. The shock-induced H2 and [Fe II] lines indicate the presence of multiple outflows, consisting of at least three, associated young stars in this region. The kinematics of H2 and [Fe II] near the northeast (NE) cavity edge supports that the NE main outflow from MWC 1080A is the blueshifted one with a low inclination angle. The H2 and [Fe II] lines near the southeast molecular region newly reveal that additional highly-blueshifted outflows originate from other young stars. The fluorescent H2 lines were found to trace photodissociation regions formed on the cylindrical surfaces of the main outflow cavity, which are expanding outward with a velocity of about 10-15 km/s. For the H-alpha emission, we identify its components associated with two stellar outflows and two young stars in addition to the dominant component of MWC 1080A scattered by dust. We also report a few faint H-alpha features located ~0.4 pc away in the southwest direction from MWC 1080A, which lie near the axes of the NE main outflow and one of the newly-identified outflows.
In previous papers, we introduced our method for measuring chemical abundances from integrated-light spectra of globular clusters and applied it to a variety of extragalactic star clusters. Here we extend our analysis technique to the infrared. We si multaneously analyse an optical spectrum of the massive globular cluster G280 in M31, obtained with the HIRES spectrograph on the Keck I telescope, and an H-band spectrum obtained with NIRSPEC on Keck II. We discuss the sensitivity of our results to various modifications of the input assumptions, such as different line lists and isochrones and the possible presence of a metallicity spread in G280. When using the most recent version of the Kurucz line list, we measure iron abundances of [Fe/H]=-0.68+/-0.02 from the optical spectrum and [Fe/H]=-0.60+/-0.07 from the infrared spectrum. These values agree well with previous spectroscopic determinations of the metallicity of G280. While the small difference between the optical and infrared measurements is insignificant given the uncertainties, it is also consistent with a metallicity spread similar to that observed in massive GCs such as Omega Cen and G1, and also hinted at by the colour-magnitude diagram of G280. The optical and infrared spectra both indicate an alpha-enhancement of about 0.3-0.4 dex relative to solar-scaled abundances, as typically also observed in Milky Way GCs. It appears that our integrated-light analysis technique also performs well in the H-band. However, complications due to the presence of molecular bands and telluric contamination are more severe in the infrared, and accurate modelling of the coolest giants is more critical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا