ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation in Ultraluminous Infrared Galaxies Probed with AKARI Near-Infrared Spectroscopy

181   0   0.0 ( 0 )
 نشر من قبل Kenichi Yano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted systematic observations of the HI Br-alpha line (4.05 micron) and the polycyclic aromatic hydrocarbon (PAH) feature (3.3 micron) in 50 nearby (z<0.3) ultraluminous infrared galaxies (ULIRGs) with AKARI. The Br-alpha line is predicted to be the brightest among the HI lines under high dust-extinction conditions (A_V>15 mag). The Br-alpha line traces ionizing photons from OB stars and so is used as an indicator of star formation on the assumption of the initial mass function. We detected the Br-alpha line in 33 ULIRGs. The luminosity of the line (L_BrA) correlates well with that of the 3.3 micron PAH emission (L_3.3). Thus we utilize L_3.3 as an indicator of star formation in fainter objects where the Br-alpha line is undetected. The mean L_BrA/L_IR ratio in LINERs/Seyferts is significantly lower than that in HII galaxies. This difference is reconfirmed with the L_3.3/L_IR ratio in the larger sample (46 galaxies). Using the ratios, we estimate that the contribution of starburst in LINERs/Seyferts is ~67%, and active galactic nuclei contribute to the remaining ~33%. However, comparing the number of ionizing photons, Q_BrA, derived from L_BrA with that, Q_IR, expected from star formation rate required to explain L_IR, we find that the mean Q_BrA/Q_IR ratio is only 55.5+/-7.5% even in HII galaxies which are thought to be energized by pure starburst. This deficit of ionizing photons traced by the Br-alpha line is significant even taking heavy dust extinction into consideration. We propose that dust within HII regions absorbs a significant fraction of ionizing photons.



قيم البحث

اقرأ أيضاً

323 - E. Kilerci Eser , T. Goto , Y. Doi 2014
We present a new catalog of 118 Ultraluminous Infrared Galaxies (ULIRGs) and one Hyperluminous Infrared Galaxy (HLIRG) by crossmatching AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the Final Data Release of t he Two-Degree Field Galaxy Redshift Survey (2dFGRS). 40 of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing/post mergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the AGN fraction and IR luminosity. We show that ULIRGs have a large off-set from the main sequence up to z~1; their off-set from the z~2 main sequence is relatively smaller. We find a consistent result with the previous studies showing that compared to local star forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We for the first time demonstrate that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex - 0.5 dex) is comparable with the scatter of z~2-3 galaxies. Their optical colors show that ULIRGs are mostly blue galaxies and this agrees with previous findings. We provide the largest local (0.050 < z < 0.487) ULIRG catalog with stellar masses, SFRs, gas metallicities and optical colors. Our catalog provides us active galaxies analogous to high-z galaxies in the local Universe where they can be rigorously scrutinized.
We report on the results of systematic infrared 2.5-5 micron spectroscopy of 45 nearby ultraluminous infrared galaxies (ULIRGs) at z < 0.3 using IRC onboard the AKARI satellite. This paper investigates whether the luminosities of these ULIRGs are dom inated by starburst activity, or optically elusive buried AGNs are energetically important. Our criteria include the strengths of the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission features and the optical depths of absorption features at 3.1 micron due to ice-covered dust grains and at 3.4 micron from bare carbonaceous dust grains. Because of the AKARI IRCs spectroscopic capability in the full 2.5-5 micron wavelength range, unaffected by Earths atmosphere, we can apply this energy diagnostic method to ULIRGs at z > 0.15. We estimate the intrinsic luminosities of extended (several kpc), modestly obscured (Av < 15 mag) starburst activity based on the 3.3 micron PAH emission luminosities measured in AKARI IRC slitless spectra, and confirm that such starbursts are energetically unimportant in nearby ULIRGs. In roughly half of the observed ULIRGs classified optically as non-Seyferts, we find signatures of luminous energy sources that produce no PAH emission and/or are more centrally concentrated than the surrounding dust. We interpret these energy sources as buried AGNs. The fraction of ULIRGs with detectable buried AGN signatures increases with increasing infrared luminosity. Our overall results support the scenario that luminous buried AGNs are important in many ULIRGs at z < 0.3 classified optically as non-Seyferts, and that the optical undetectability of such buried AGNs occurs merely because of a large amount of nuclear dust, which can make the sightline of even the lowest dust column density opaque to the ionizing radiation of the AGNs.
With the Infrared Camera on board AKARI, we carried out near-infrared (2.5-5.0 micron) spectroscopy of the central kiloparsec region of the barred spiral galaxy, NGC1097, categorized as Seyfert 1 with a circumnuclear starburst ring. Our observations mapped the area of ~50*10 with the resolution of ~5, covering about a half of the ring and the galactic center. As a result, we spatially resolve the starburst ring in the polycyclic aromatic hydrocarbon 3.3 micron, the aliphatic hydrocarbon 3.4-3.6 micron features, and the hydrogen Br alpha 4.05 micron emission. They exhibit spatial distributions significantly different from each other, indicating that the environments vary considerably around the ring. In particular, the aliphatic features are enhanced near the bar connecting the ring with the nucleus, where the structure of hydrocarbon grains seems to be relatively disordered. Near the center, the continuum emission and the CO/SiO absorption features are strong, which indicates that the environments inside the ring are dominated by old stellar populations. The near-infrared spectra do not show any evidence for the presence of nuclear activity.
We present Keck-MOSFIRE H and K spectra for a sample of 24 candidate quiescent galaxies (QGs) at 3<z<4, identified from UVJ colors and photometric redshifts in the ZFOURGE and 3DHST surveys. We obtain spectroscopic redshifts for half of the sample, u sing absorption or emission lines, and confirm the high accuracy of the photometric redshifts with a median error of 1.2%. Two galaxies turn out to be dusty objects at lower redshifts (z<2.5), and are the only two detected in the sub-mm with ALMA. High equivalent-width [OIII] was observed in two galaxies, contributing up to 30% of the K-band flux and mimicking the colors of an old stellar population. This implies a failure rate of only 20% for the UVJ selection at these redshifts. Balmer absorption was identified in 4 of the brighest galaxies, confirming the absence of OB stars. Modeling all QGs with a wide range of star-formation histories, we find sSFR a factor of 10 below the main sequence (MS) for all but one galaxy, and less than 0.01 Gyr$^{-1}$ for half of the sample. This is consistent with the H$beta$ and [OII] luminosities, and the ALMA non-detections. We then find that these QGs have quenched on average 300 Myr before observation, between z=3.5 and 5, and that they formed at z~5.5 with a mean SFR~300 Msun/yr. Considering an alternative selection of QGs based solely on the sSFR from SED modeling, we find that galaxies a factor 10 below the MS are 40% more numerous than UVJ-quiescent galaxies, implying that the UVJ selection is pure but incomplete. Current models fail at reproducing our observations and underestimate either the number density of QGs by more than an order of magnitude or the duration of their quiescence by a factor two. Overall, these results confirm the existence of an unexpected population of QGs at z>3, and offer the first insights on their formation history. [abridged]
We present low resolution near-infrared spectroscopy of an unbiased sample of 24 ultraluminous infrared galaxies (ULIRGs), selected from samples previously observed spectroscopically in the mid-infrared with the Infrared Space Observatory (ISO). Qual itatively, the near-infrared spectra resemble those of starbursts. Only in one ULIRG, IRAS 04114-5117E, do we find spectroscopic evidence for AGN activity. The spectroscopic classification in the near-infrared is in very good agreement with the mid-infrared one. For a subset of our sample for which extinction corrections can be derived from Pa-alpha and Br-gamma, we find rather high Pa-alpha luminosities, in accordance with the powering source of these galaxies being star formation.[Fe] emission is strong in ULIRGs and may be linked to starburst and superwind activity. Additionally, our sample includes two unusual objects. The first, IRAS F00183-7111, exhibits extreme [Fe] emission and the second, IRAS F23578-5307, is according to our knowledge one of the most luminous infrared galaxies in H2 rotation-vibration emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا