ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling of integrated-light spectra from the optical to the near-infrared: the globular cluster G280 in M31

94   0   0.0 ( 0 )
 نشر من قبل Soeren S. Larsen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In previous papers, we introduced our method for measuring chemical abundances from integrated-light spectra of globular clusters and applied it to a variety of extragalactic star clusters. Here we extend our analysis technique to the infrared. We simultaneously analyse an optical spectrum of the massive globular cluster G280 in M31, obtained with the HIRES spectrograph on the Keck I telescope, and an H-band spectrum obtained with NIRSPEC on Keck II. We discuss the sensitivity of our results to various modifications of the input assumptions, such as different line lists and isochrones and the possible presence of a metallicity spread in G280. When using the most recent version of the Kurucz line list, we measure iron abundances of [Fe/H]=-0.68+/-0.02 from the optical spectrum and [Fe/H]=-0.60+/-0.07 from the infrared spectrum. These values agree well with previous spectroscopic determinations of the metallicity of G280. While the small difference between the optical and infrared measurements is insignificant given the uncertainties, it is also consistent with a metallicity spread similar to that observed in massive GCs such as Omega Cen and G1, and also hinted at by the colour-magnitude diagram of G280. The optical and infrared spectra both indicate an alpha-enhancement of about 0.3-0.4 dex relative to solar-scaled abundances, as typically also observed in Milky Way GCs. It appears that our integrated-light analysis technique also performs well in the H-band. However, complications due to the presence of molecular bands and telluric contamination are more severe in the infrared, and accurate modelling of the coolest giants is more critical.



قيم البحث

اقرأ أيضاً

329 - J. E. Colucci 2009
We report the first detailed chemical abundances for 5 globular clusters (GCs) in M31 from high-resolution (R ~ 25,000) spectroscopy of their integrated light. These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its globular cluster population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope, and are analyzed using a new integrated light spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages >10 Gyrs, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the alpha-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [alpha/Fe], and [Al/Fe] to be enhanced in the integrated light abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from integrated light do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low or high resolution integrated light abundances of globular clusters that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all 5 M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.
Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution (R = 22, 500) H-band integrated light spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared spectra offer l ines from new elements, of different strengths, and at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of infrared integrated light analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances, but are systematically offset from optical, Lick index abundances. With a few exceptions, the other abundances agree between the optical and the infrared within the 1{sigma} uncertainties. The first integrated K abundances are also presented, and demonstrate that K tracks the alpha-elements. The combination of infrared and optical abundances allows better determinations of GC properties, and enables probes of the multiple populations in extragalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.
We present a comparison of high-resolution, integrated-light, detailed chemical abundances for Galactic and extragalactic globular clusters in both massive galaxies and dwarf galaxies. We include measurements of Fe, Ca, Si, Na, and Al for globular cl uster samples in the Milky Way, M31, Large Magellanic Cloud, and NGC 5128. These and other recent results from our group on M31 and NGC 5128 are the first chemical abundances derived from discrete absorption features in old stars beyond the Milky Way and its nearest neighbors. These abundances can provide both galaxy enrichment histories and constraints on globular cluster formation and evolution.
G1, also known as Mayall II, is one of the most massive star clusters in M31. Its mass, ellipticity, and location in the outer halo make it a compelling candidate for a former nuclear star cluster. This paper presents an integrated light abundance an alysis of G1, based on a moderately high-resolution (R=15,000) spectrum obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope in 2007 and 2008. To independently determine the metallicity, a moderate resolution (R~4,000) spectrum of the calcium-II triplet lines in the near-infrared was also obtained with the Astrophysical Research Consortiums 3.5-m telescope at Apache Point Observatory. From the high-resolution spectrum, G1 is found to be a moderately metal-poor cluster, with [Fe/H]=-0.98+/-0.05. G1 also shows signs of alpha-enhancement (based on Mg, Ca, and Ti) and lacks the s-process enhancements seen in dwarf galaxies (based on comparisons of Y, Ba, and Eu), indicating that it originated in a fairly massive galaxy. Intriguingly, G1 also exhibits signs of Na and Al enhancement, a unique signature of GCs -- this suggests that G1s formation is intimately connected with GC formation. G1s high [Na/Fe] also extends previous trends with cluster velocity dispersion to an even higher mass regime, implying that higher mass clusters are more able to retain Na-enhanced ejecta. The effects of intracluster abundance spreads are discussed in a subsequent paper. Ultimately, G1s chemical properties are found to resemble other M31 GCs, though it also shares some similarities with extragalactic nuclear star clusters.
In this paper we refine our method for the abundance analysis of high resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old ($>$10 Gyr) Milky Way GCs. He re we extend the technique to young clusters using a training set of 9 GCs in the Large Magellanic Cloud (LMC). Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a $sim$5 Gyr range, the ages of $sim$2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a $sim$200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyrs with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old Milky Way GCs (0.1 dex); the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of the $sim 20$ elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا