ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared spectroscopy of candidate red supergiant stars in clusters

114   0   0.0 ( 0 )
 نشر من قبل Messineo Maria
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks < 7 mag) in GLIMPSE and 2MASS images. A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 Msun to 15 Msun. Two red supergiants are located at Galactic coordinates (l,b)=(16.7deg,-0.63deg) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b)=(49.3deg,+0.72deg) and at a distance of ~7.0 kpc. Spectroscopic analysis of the brightest stars of detected overdensities and studies of interstellar extinction along their line of sights are fundamental to distinguish regions of low extinction from actual stellar clusters. The census of young star clusters containing red supergiants is incomplete; in the existing all-sky near-infrared surveys, they can be identified as overdensities of bright stars with infrared color-magnitude diagrams characterized by gaps.


قيم البحث

اقرأ أيضاً

210 - Ryan L. Doering 2009
We report near-infrared photometric measurements of 35 Herbig Ae/Be candidate stars obtained with direct imaging and aperture photometry. Observations were made through the broadband J, H, and K filters, with each source imaged in at least one of the wavebands. We achieved subarcsecond angular resolution for all observations, providing us with the opportunity to search for close binary candidates and extended structure. The imaging revealed five newly identified binary candidates and one previously resolved T Tauri binary among the target sources with separations of <~2.5. Separate photometry is provided for each of the binary candidate stars. We detect one extended source that has been identified as a protoplanetary nebula. Comparing our magnitudes to past measurements yields significant differences for some sources, possibly indicating photometric variability. H-band finding charts for all of our sources are provided to aid follow-up high-resolution imaging.
The massive red supergiant (RSG) W26 in Westerlund 1 is one of a growing number of RSGs shown to have winds that are ionized from the outside in. The fate of this dense wind material is important for models of second generation star formation in mass ive star clusters. Mackey et al. (2014) showed that external photoionization can stall the wind of RSGs and accumulate mass in a dense static shell. We use 1D R-HD simulations of an externally photoionized wind to predict the Halpha and [NII] emission arising from photoionized winds both with and without a dense shell. We analyse spectra of the Halpha and [NII] emission in the environment around W26 and compare them with predicted synthetic emission. Simulations of slow winds that are decelerated into a dense shell show strongly limb-brightened line emission, with line radial velocities that are independent of the wind speed. Faster winds (>22 km/s) do not form a dense shell, have less limb-brightening, and the line radial velocity is a good tracer of the wind speed. The brightness of the [NII] and Halpha lines as a function of distance from W26 agrees reasonably well with observations when only the line flux is considered. The radial velocity disagrees, however: the brightest observed emission is blueshifted by ~25 km/s relative to the radial velocity of the star, whereas a spherically symmetric wind has the brightest emission at zero radial velocity. Our results show that the bright nebula surrounding W26 must be asymmetric; we suggest it is confined by external ram pressure from the wind of the nearby supergiant W9. We obtain a lower limit on the nitrogen abundance within the nebula of 2.35 times solar. The line ratio strongly favours photoionization over shock ionization, and so even if the observed nebula is pressure confined there should still be an ionization front and a photoionization-confined shell closer to the star.
Context: Precise chemical abundances coupled with reliable ages are key ingredients to understand the chemical history of our Galaxy. Open Clusters (OCs) are useful for this purpose because they provide ages with good precision. Aims: The aim of th is work is to investigate the relations of different chemical abundance ratios vs age traced by red clump (RC) stars in OCs. Methods: We analyze a large sample of 209 reliable members in 47 OCs with available high-resolution spectroscopy. We applied a differential line-by-line analysis to provide a comprehensive chemical study of 25 chemical species. This sample is among the largest samples of OCs homogeneously characterized in terms of atmospheric parameters, detailed chemistry, and ages. Results: In our metallicity range (-0.2<[M/H]<+0.2) we find that while most Fe-peak and alpha elements have flat dependence with age, the s-process elements show decreasing trends with increasing age with a remarkable knee at 1 Gyr. For Ba, Ce, Y, Mo and Zr we find a plateau at young ages (< 1 Gyr). We investigate the relations of all possible combinations among the computed chemical species with age. We find 19 combinations with significant slopes, including [Y/Mg] and [Y/Al]. The ratio [Ba/alpha] is the one with the most significant correlations found. Conclusions: We find that the [Y/Mg] relation found in the literature using Solar twins is compatible with the one found here in the Solar neighbourhood. The age-abundance relations show larger scatter for clusters at large distances (d>1 kpc) than for the Solar neighbourhood, particularly in the outer disk. We conclude that these relations need to be understood also in terms of the complexity of the chemical space introduced by the Galactic dynamics, on top of pure nucleosynthetic arguments, especially out of the local bubble.
128 - F. Martins 2012
We study the near-infrared properties of the super star cluster NGC1750-1 in order to constrain its spatial extent, its stellar population and its age. We use adaptive optics assisted integral field spectroscopy with SINFONI on the VLT. We estimate t he spatial extent of the cluster and extract its K-band spectrum from which we constrain the age of the dominant stellar population. Our observations have an angular resolution of about 0.11, providing an upper limit on the cluster radius of 2.85+/-0.50 pc depending on the assumed distance. The K-band spectrum is dominated by strong CO absorption bandheads typical of red supergiants. Its spectral type is equivalent to a K4-5I star. Using evolutionary tracks from the Geneva and Utrecht groups, we determine an age of 12+/-6 Myr. The large uncertainty is rooted in the large difference between the Geneva and Utrecht tracks in the red supergiants regime. The absence of ionized gas lines in the K-band spectrum is consistent with the absence of O and/or Wolf-Rayet stars in the cluster, as expected for the estimated age.
329 - Michelle Doherty 2009
We present a spectroscopic campaign to follow-up red colour-selected candidate massive galaxies in two high redshift proto-clusters surrounding radio galaxies. We observed a total of 57 galaxies in the field of MRC0943-242 (z=2.93) and 33 in the fiel d of PKS1138-262 (z=2.16) with a mix of optical and near-infrared multi-object spectroscopy. We confirm two red galaxies in the field of PKS1138-262 at the redshift of the radio galaxy. Based on an analysis of their spectral energy distributions, and their derived star formation rates from the H-alpha and 24um flux, one object belongs to the class of dust-obscured star-forming red galaxies, while the other is evolved with little ongoing star formation. This result represents the first red and mainly passively evolving galaxy to be confirmed as companion galaxies in a z>2 proto-cluster. Both red galaxies in PKS1138-262 are massive, of the order of 4-6x10^11 M_Sol. They lie along a Colour-Magnitude relation which implies that they formed the bulk of their stellar population around z=4. In the MRC0943-242 field we find no red galaxies at the redshift of the radio galaxy but we do confirm the effectiveness of our JHK_s selection of galaxies at 2.3<z<3.1, finding that 10 out of 18 (56%) of JHK_s-selected galaxies whose redshifts could be measured fall within this redshift range. We also serendipitously identify an interesting foreground structure of 6 galaxies at z=2.6 in the field of MRC0943-242. This may be a proto-cluster itself, but complicates any interpretation of the red sequence build-up in MRC0943-242 until more redshifts can be measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا