ﻻ يوجد ملخص باللغة العربية
We examine the mechanical matrix model that can be derived from the SU(2) Yang-Mills light-cone field theory by restricting the gauge fields to depend on the light-cone time alone. We use Diracs generalized Hamiltonian approach. In contrast to its well-known instant-time counterpart the light-cone version of SU(2) Yang-Mills mechanics has in addition to the constraints, generating the SU(2) gauge transformations, the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. It is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics. Considering the complex solutions to the second class constraints we show at this time that the unconstrained Hamiltonian system represents the well-known model of conformal mechanics with a ``strength of the inverse square interaction determined by the value of the gauge field spin.
We study the classical dynamics of mechanical model obtained from the light-cone version of SU(2) Yang-Mills field theory under the supposition of gauge potential dependence only on ``time along the light-cone direction. The computer algebra system M
By using the method of center projection the center vortex part of the gauge field is isolated and its propagator is evaluated in the center Landau gauge, which minimizes the open 3-dimensional Dirac volumes of non-trivial center links bounded by the
This paper deals with various interrelations between strings and surfaces in three dimensional ambient space, two dimensional integrable models and two dimensional and four dimensional decomposed SU(2) Yang-Mills theories. Initially, a spinor version
The analysis of the large-$N$ limit of $U(N)$ Yang-Mills theory on a surface proceeds in two stages: the analysis of the Wilson loop functional for a simple closed curve and the reduction of more general loops to a simple closed curve. In the case of
We consider spatial coarse-graining in statistical ensembles of non-selfintersecting and one-fold selfintersecting center-vortex loops as they emerge in the confining phase of SU(2) Yang-Mills thermodynamics. This coarse-graining is due to a noisy en