ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossover from spin-waves to diffusive spin excitations in underdoped Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$

132   0   0.0 ( 0 )
 نشر من قبل Gregory Tucker
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using inelastic neutron scattering, we show that the onset of superconductivity in underdoped Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ coincides with a crossover from well-defined spin waves to overdamped and diffusive spin excitations. This crossover occurs despite the presence of long-range stripe antiferromagnetic order for samples in a compositional range from x=0.04-0.055, and is a consequence of the shrinking spin-density wave gap and a corresponding increase in the particle-hole (Landau) damping. The latter effect is captured by a simple itinerant model relating Co doping to changes in the hot spots of the Fermi surface. We argue that the overdamped spin fluctuations provide a pairing mechanism for superconductivity in these materials.


قيم البحث

اقرأ أيضاً

504 - T. Hajiri , T. Ito , M. Matsunami 2014
We observed the anisotropic superconducting-gap (SC-gap) structure of a slightly overdoped superconductor, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ ($x=0.1$), using three-dimensional (3D) angle-resolved photoemission spectroscopy. Two hole Fermi surfaces (FSs) observed at the Brillouin zone center and an inner electron FS at the zone corner showed a nearly isotropic SC gap in 3D momentum space. However, the outer electron FS showed an anisotropic SC gap with nodes or gap minima around the M and A points. The different anisotropies obtained the SC gap between the outer and inner electron FSs cannot be expected from all theoretical predictions with spin fluctuation, orbital fluctuation, and both competition. Our results provide a new insight into the SC mechanisms of iron pnictide superconductors.
We report the experimental details of how mechanical detwinning can be implemented in tandem with high sensitivity nuclear magnetic resonance measurements and use this setup to measure the in-plane anisotropy of the spin-lattice relaxation rate in un derdoped Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ with $x=0.048$. The anisotropy reaches a maximum of 30% at $T_{N}$, and the recovery data reveal that the glassy behavior of the spin fluctuations present in the twinned state persist in the fully detwinned crystal. A theoretical model is presented to describe the spin-lattice relaxation rate in terms of anisotropic nematic spin fluctuations.
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate sta tic magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.
With muon spin rotation ($ mu $SR) we studied the transition between the orthorhombic antiferromagnetic (o-AF) and the tetragonal antiferromagnetic (t-AF) states of a weakly underdoped Ba$ _{1-x} $K$ _{x} $Fe$ _{2} $As$ _{2} $ single crystal. We obse rved some characteristic changes of the magnitude and the orientation of the magnetic field at the muon site which, due to the fairly high point symmetry of the latter, allow us to identify the magnetic structure of the t-AF state. It is the so-called, inhomogeneous double-$mathbf{Q}$ magnetic structure with $ c $-axis oriented moments which has a vanishing magnetic moment on half of the Fe sites.
Resistivity, Hall effect and magnetoresistance have been investigated systematically on single crystals of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ranging from undoped to optimally doped regions. A systematic evolution of the quasiparticle scattering has been ob served. It is found that the resistivity in the normal state of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ is insensitive to the potassium doping concentration, which is very different from the electron doped counterpart Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$, where the resistivity at 300 K reduces to half value of the undoped one when the system is optimally doped. In stark contrast, the Hall coefficient R$_H$ changes suddenly from a negative value in the undoped sample to a positive one with slight K-doping, and it keeps lowering with further doping. We interpret this dichotomy due to the asymmetric scattering rate in the hole and the electron pockets with much higher mobility of the latter. The magnetoresistivity shows also a non-monotonic doping dependence indicating an anomalous feature at about 80 K to 100 K, even in the optimally doped sample, which is associated with a possible pseudogap feature. In the low temperature region, it seems that the resistivity has the similar values when superconductivity sets in disregarding the different T$_c$ values, which indicates a novel mechanism of the superconductivity. A linear feature of resistivity $rho_{ab}$ vs. $T$ was observed just above $T_c$ for the optimally doped sample, suggesting a quantum criticality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا