ﻻ يوجد ملخص باللغة العربية
Inelastic neutron scattering is employed to study the reciprocal-space structure and dispersion of magnetic excitations in the normal and superconducting states of single-crystalline Rb0.8Fe1.6Se2. We show that the recently discovered magnetic resonant mode in this compound has a quasi-two-dimensional character, similar to overdoped iron-pnictide superconductors. Moreover, it has a rich in-plane structure that is dominated by four elliptical peaks, symmetrically surrounding the Brillouin zone corner, without sqrt(5) x sqrt(5) reconstruction. We also present evidence for the dispersion of the resonance peak, as its position in momentum space depends on energy. Comparison of our findings with the results of band structure calculations provides strong support for the itinerant origin of the observed signal. It can be traced back to the nesting of electron-like Fermi pockets in the doped metallic phase of the sample in the absence of iron-vacancy ordering.
We report neutron inelastic scattering measurements on the normal and superconducting states of single-crystalline Cs0.8Fe1.9Se2. Consistent with previous measurements on Rb(x)Fe(2-y)Se2, we observe two distinct spin excitation signals: (i) spin-wave
Two iron-chalcogenide superconductors Li(x)[C5H5N](y)Fe(2-z)Se2 and Cs(x)Fe(2-z)Se2 in the as-prepared and annealed state have been investigated by means of the Moessbauer spectroscopy versus temperature. Multi-component spectra are obtained. One can
We report the Ni-doping effect on magnetism and superconductivity (SC) in an Eu-containing 112-type system Eu(Fe$_{1-x}$Ni$_{x})$As$_{2}$ ($0leq xleq 0.15$) by the measurements of resistivity, magnetization, and specific heat. The undoped EuFeAs$_2$
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does no
The superconducting and magnetic properties of phase-separated A$_x$Fe$_{2-y}$Se$_2$ compounds are known to depend on post-growth heat treatments and cooling profiles. This paper focusses on the evolution of microstructure on annealing, and how this