ترغب بنشر مسار تعليمي؟ اضغط هنا

Dominant weight multiplicities in hybrid characters of Bn, Cn, F4, G2

186   0   0.0 ( 0 )
 نشر من قبل Marzena Szajewska
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The characters of irreducible finite dimensional representations of compact simple Lie group G are invariant with respect to the action of the Weyl group W(G) of G. The defining property of the new character-like functions (hybrid characters) is the fact that W(G) acts differently on the character term corresponding to the long roots than on those corresponding to the short roots. Therefore the hybrid characters are defined for the simple Lie groups with two different lengths of their roots. Dominant weight multiplicities for the hybrid characters are determined. The formulas for hybrid dimensions are also found for all cases as the zero degree term in power expansion of the hybrid characters.

قيم البحث

اقرأ أيضاً

Lie groups with two different root lengths allow two mixed sign homomorphisms on their corresponding Weyl groups, which in turn give rise to two families of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas leading t o the Gaussian cubature formulas for families of polynomials arising from the characters of irreducible representations of any simple Lie group, to new cubature formulas based on the corresponding hybrid characters. These formulas are new forms of Gaussian cubature in the short root length case and new forms of Radau cubature in the long root case. The nodes for the cubature arise quite naturally from the (computationally efficient) elements of finite order of the Lie group.
Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so tha t digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results, with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular $S$ matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.
46 - Mihail Poplavskyi 2010
We present an asymptotic analysis of the Verblunsky coefficients for the polynomials orthogonal on the unit circle with the varying weight $e^{-nV(cos x)}$, assuming that the potential $V$ has four bounded derivatives on $[-1,1]$ and the equilibrium measure has a one interval support. We obtain the asymptotics as a solution of the system of string equations.
This paper extends the Madelung-Bohm formulation of quantum mechanics to describe the time-reversible interaction of classical and quantum systems. The symplectic geometry of the Madelung transform leads to identifying hybrid classical-quantum Lagran gian paths extending the Bohmian trajectories from standard quantum theory. As the classical symplectic form is no longer preserved, the nontrivial evolution of the Poincare integral is presented explicitly. Nevertheless, the classical phase-space components of the hybrid Bohmian trajectory identify a Hamiltonian flow parameterized by the quantum coordinate and this flow is associated to the motion of the classical subsystem. In addition, the continuity equation of the joint classical-quantum density is presented explicitly. While the von Neumann density operator of the quantum subsystem is always positive-definite by construction, the hybrid density is generally allowed to be unsigned. However, the paper concludes by presenting an infinite family of hybrid Hamiltonians whose corresponding evolution preserves the sign of the probability density for the classical subsystem.
We deal with the reversible dynamics of coupled quantum and classical systems. Based on a recent proposal by the authors, we exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics in which both the quantum density matrix and the classical Liouville distribution retain their initial positive sign. In this way, the evolution allows identifying a classical and a quantum state in interaction at all times. After combining Koopmans Hilbert-space method in classical mechanics with van Hoves unitary representations in prequantum theory, the closure model is made available by the variational structure underlying a suitable wavefunction factorization. Also, we use Poisson reduction by symmetry to show that the hybrid model possesses a noncanonical Poisson structure that does not seem to have appeared before. As an example, this structure is specialized to the case of quantum two-level systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا