ﻻ يوجد ملخص باللغة العربية
We deal with the reversible dynamics of coupled quantum and classical systems. Based on a recent proposal by the authors, we exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics in which both the quantum density matrix and the classical Liouville distribution retain their initial positive sign. In this way, the evolution allows identifying a classical and a quantum state in interaction at all times. After combining Koopmans Hilbert-space method in classical mechanics with van Hoves unitary representations in prequantum theory, the closure model is made available by the variational structure underlying a suitable wavefunction factorization. Also, we use Poisson reduction by symmetry to show that the hybrid model possesses a noncanonical Poisson structure that does not seem to have appeared before. As an example, this structure is specialized to the case of quantum two-level systems.
Upon revisiting the Hamiltonian structure of classical wavefunctions in Koopman-von Neumann theory, this paper addresses the long-standing problem of formulating a dynamical theory of classical-quantum coupling. The proposed model not only describes
Based on Koopmans theory of classical wavefunctions in phase space, we present the Koopman-van Hove (KvH) formulation of classical mechanics as well as some of its properties. In particular, we show how the associated classical Liouville density aris
Based on the Koopman-van Hove (KvH) formulation of classical mechanics introduced in Part I, we formulate a Hamiltonian model for hybrid quantum-classical systems. This is obtained by writing the KvH wave equation for two classical particles and appl
We extend the concept of implementability of semigroups of evolution operators associated with dynamical systems to quantum case. We show that such an extension can be properly formulated in terms of Jordan morphisms and isometries on non-commutative
This paper extends the Madelung-Bohm formulation of quantum mechanics to describe the time-reversible interaction of classical and quantum systems. The symplectic geometry of the Madelung transform leads to identifying hybrid classical-quantum Lagran