ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic behavior of the Verblunsky coefficients for the OPUC with a varying weight

59   0   0.0 ( 0 )
 نشر من قبل Mihail Poplavskyi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mihail Poplavskyi




اسأل ChatGPT حول البحث

We present an asymptotic analysis of the Verblunsky coefficients for the polynomials orthogonal on the unit circle with the varying weight $e^{-nV(cos x)}$, assuming that the potential $V$ has four bounded derivatives on $[-1,1]$ and the equilibrium measure has a one interval support. We obtain the asymptotics as a solution of the system of string equations.


قيم البحث

اقرأ أيضاً

The method, proposed in the given work, allows the application of well developed standard methods used in quantum mechanics for approximate solution of the systems of ordinary linear differential equations with periodical coefficients.
We consider normal forms in `magnetic bottle type Hamiltonians of the form $H=frac{1}{2}(rho^2_rho+omega^2_1rho^2) +frac{1}{2}p^2_z+hot$ (second frequency $omega_2$ equal to zero in the lowest order). Our main results are: i) a novel method to constr uct the normal form in cases of resonance, and ii) a study of the asymptotic behavior of both the non-resonant and the resonant series. We find that, if we truncate the normal form series at order $r$, the series remainder in both constructions decreases with increasing $r$ down to a minimum, and then it increases with $r$. The computed minimum remainder turns to be exponentially small in $frac{1}{Delta E}$, where $Delta E$ is the mirror oscillation energy, while the optimal order scales as an inverse power of $Delta E$. We estimate numerically the exponents associated with the optimal order and the remainders exponential asymptotic behavior. In the resonant case, our novel method allows to compute a `quasi-integral (i.e. truncated formal integral) valid both for each particular resonance as well as away from all resonances. We applied these results to a specific magnetic bottle Hamiltonian. The non resonant normal form yields theorerical invariant curves on a surface of section which fit well the empirical curves away from resonances. On the other hand the resonant normal form fits very well both the invariant curves inside the islands of a particular resonance as well as the non-resonant invariant curves. Finally, we discuss how normal forms allow to compute a critical threshold for the onset of global chaos in the magnetic bottle.
We find the asymptotic behaviors of Toeplitz determinants with symbols which are a sum of two contributions: one analytical and non-zero function in an annulus around the unit circle, and the other proportional to a Dirac delta function. The formulas are found by using the Wiener-Hopf procedure. The determinants of this type are found in computing the spin-correlation functions in low-lying excited states of some integrable models, where the delta function represents a peak at the momentum of the excitation. As a concrete example of applications of our results, using the derived asymptotic formulas we compute the spin-correlation functions in the lowest energy band of the frustrated quantum XY chain in zero field, and the ground state magnetization.
This paper develops a method to carry out the large-$N$ asymptotic analysis of a class of $N$-dimensional integrals arising in the context of the so-called quantum separation of variables method. We push further ideas developed in the context of rand om matrices of size $N$, but in the present problem, two scales $1/N^{alpha}$ and $1/N$ naturally occur. In our case, the equilibrium measure is $N^{alpha}$-dependent and characterised by means of the solution to a $2times 2$ Riemann--Hilbert problem, whose large-$N$ behavior is analysed in detail. Combining these results with techniques of concentration of measures and an asymptotic analysis of the Schwinger-Dyson equations at the distributional level, we obtain the large-$N$ behavior of the free energy explicitly up to $o(1)$. The use of distributional Schwinger-Dyson is a novelty that allows us treating sufficiently differentiable interactions and the mixing of scales $1/N^{alpha}$ and $1/N$, thus waiving the analyticity assumptions often used in random matrix theory.
Generating functions for Clebsch-Gordan coefficients of osp(1|2) are derived. These coefficients are expressed as q goes to - 1 limits of the dual q-Hahn polynomials. The generating functions are obtained using two different approaches respectively b ased on the coherent-state representation and the position representation of osp(1j2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا