ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaussian cubature arising from hybrid characters of simple Lie groups

85   0   0.0 ( 0 )
 نشر من قبل Lenka Motlochov\\'a
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lie groups with two different root lengths allow two mixed sign homomorphisms on their corresponding Weyl groups, which in turn give rise to two families of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas leading to the Gaussian cubature formulas for families of polynomials arising from the characters of irreducible representations of any simple Lie group, to new cubature formulas based on the corresponding hybrid characters. These formulas are new forms of Gaussian cubature in the short root length case and new forms of Radau cubature in the long root case. The nodes for the cubature arise quite naturally from the (computationally efficient) elements of finite order of the Lie group.

قيم البحث

اقرأ أيضاً

160 - Jiri Hrivnak , Jiri Patera 2009
Three types of numerical data are provided for simple Lie groups of any type and rank. This data is indispensable for Fourier-like expansions of multidimensional digital data into finite series of $C-$ or $S-$functions on the fundamental domain $F$ o f the underlying Lie group $G$. Firstly, we consider the number $|F_M|$ of points in $F$ from the lattice $P^{vee}_M$, which is the refinement of the dual weight lattice $P^{vee}$ of $G$ by a positive integer $M$. Secondly, we find the lowest set $Lambda_M$ of dominant weights, specifying the maximal set of $C-$ and $S-$functions that are pairwise orthogonal on the point set $F_M$. Finally, we describe an efficient algorithm for finding, on the maximal torus of $G$, the number of conjugate points to every point of $F_M$. Discrete $C-$ and $S-$transforms, together with their continuous interpolations, are presented in full generality.
The discrete orthogonality of special function families, called $C$- and $S$-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnak and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the result s of Hrivnak and Patera are extended to two additional recently discovered families of special functions, called $S^s-$ and $S^l-$functions. The main result is an explicit description of their pairwise discrete orthogonality within each family, when the functions are sampled on finite fragments $F^s_M$ and $F^l_M$ of a lattice in any dimension $ngeq2$ and of any density controlled by $M$, and of the symmetry of the weight lattice of any compact simple Lie group with two different lengths of roots.
Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the We yl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced and all ten types of the corresponding discrete Hartley transforms are detailed.
94 - A.G. Elashvili , V.G. Kac 2003
We study and give a complete classification of good $ZZ$-gradings of all simple finite-dimensional Lie algebras. This problem arose in the quantum Hamiltonian reduction for affine Lie algebras.
Recursive algebraic construction of two infinite families of polynomials in $n$ variables is proposed as a uniform method applicable to every semisimple Lie group of rank $n$. Its result recognizes Chebyshev polynomials of the first and second kind a s the special case of the simple group of type $A_1$. The obtained not Laurent-type polynomials are proved to be equivalent to the partial cases of the Macdonald symmetric polynomials. Basic relation between the polynomials and their properties follow from the corresponding properties of the orbit functions, namely the orthogonality and discretization. Recurrence relations are shown for the Lie groups of types $A_1$, $A_2$, $A_3$, $C_2$, $C_3$, $G_2$, and $B_3$ together with lowest polynomials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا