ﻻ يوجد ملخص باللغة العربية
We have investigated the temperature evolution of the magnetic structures of HoFeO$_3$ by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for hfo are described by the magnetic groups Pb$$n$2_1$, Pbn$2_1$ and Pbn$2_1$ and are stable in the temperature ranges $approx$ 600-55~K, 55-37~K and 35$>T>2$~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along $x$ and $y$, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in hfo the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite.
Polarised neutron diffraction measurements have been made on HoFeO$_3$ single crystals magnetised in both the [001] and [100] directions ($Pbnm$ setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high fi
Neutron diffraction studies of HoFeO$_3$ single crystal were performed under external magnetic fields. The interplay between the external magnetic field, Dzyaloshinsky-Moria antisymmetric exchange and isotropic exchange interactions between Fe and Ho
This paper presents results of a recent study of multiferroic CCO by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at $T sub{N1}=24.2$ K and $T sub{N2}=23.6$ K. The low temperature magnetic structur
By the single crystal inelastic neutron scattering the orthoferrite HoFeO3 was studied. We show that the spin dynamics of the Fe subsystem does not change through the spin-reorientation transitions. The observed spectrum of magnetic excitations was a
Among various parent compounds of iron pnictide superconductors, EuFe2As2 stands out due to the presence of both spin density wave of Fe and antiferromagnetic ordering (AFM) of the localized Eu2+ moment. Single crystal neutron diffraction studies hav