ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal and Magnetic Structure of CaCo{1.86}As2 Studied by X-ray and Neutron Diffraction

332   0   0.0 ( 0 )
 نشر من قبل David C. Johnston
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron and x-ray diffraction measurements are presented for powders and single crystals of CaCo{1.86}As2. The crystal structure is a collapsed-tetragonal ThCr2Si2-type structure as previously reported, but with 7(1)% vacancies on the Co sites corresponding to the composition CaCo{1.86(2)}As2. The thermal expansion coefficients for both the a- and c-axes are positive from 10 to 300 K. Neutron diffraction measurements on single crystals demonstrate the onset of A-type collinear antiferromagnetic order below the Neel temperature TN = 52(1) K with the ordered moments directed along the tetragonal c-axis, aligned ferromagnetically in the ab-plane and antiferromagnetically stacked along the c-axis.



قيم البحث

اقرأ أيضاً

117 - V. K. Anand , R. S. Dhaka , Y. Lee 2014
We report studies of CaCo{1.86}As2 single crystals. The electronic structure is probed by angle-resolved photoemission spectroscopy (ARPES) measurements of CaCo{1.86}As2 and by full-potential linearized augmented-plane-wave calculations for the super cell Ca8Co15As16 (CaCo{1.88}As2). Our XRD crystal structure refinement is consistent with the previous combined refinement of x-ray and neutron powder diffraction data showing a collapsed-tetragonal ThCr2Si2-type structure with 7(1)% vacancies on the Co sites corresponding to the composition CaCo{1.86}As2 [D. G. Quirinale et al., Phys. Rev. B 88, 174420 (2013)]. The anisotropic magnetic susceptibility chi(T) data are consistent with the magnetic neutron diffraction data of Quirianale et al. that demonstrate the presence of A-type collinear antiferromagnetic order below the Neel temperature TN = 52(1) K with the easy axis being the tetragonal c axis. However, no clear evidence from the resistivity rho(T) and heat capacity Cp(T) data for a magnetic transition at TN is observed. A metallic ground state is demonstrated from band calculations and the rho(T), Cp(T) and ARPES data, and spin-polarized calculations indicate a competition between the A-type AFM and FM ground states. The Cp(T) data exhibit a large Sommerfield electronic coefficient reflecting a large density of states at the Fermi energy D(EF), consistent with the band structure calculations which also indicate a large D(EF) arising from Co 3d bands. At 1.8 K the M(H) data for H|| c exhibit a well-defined first-order spin-flop transition at an applied field of 3.5 T. The small ordered moment of 0.3 muB/Co obtained from the M(H) data at low T, the large exchange enhancement of chi and the lack of a self-consistent interpretation of the chi(T) and M(H,T) data in terms of a local moment Heisenberg model together indicate that the magnetism of CaCo{1.86}As2 is itinerant.
We present a systematic investigation of the antiferromagnetic ordering and structural distortion for the series of Ba(Fe{1-x}Ru{x})2As2 compounds (0 <= x <= 0.246). Neutron and x-ray diffraction measurements demonstrate that, unlike for the electron -doped compounds, the structural and magnetic transitions remain coincident in temperature. Both the magnetic and structural transitions are gradually suppressed with increased Ru concentration and coexist with superconductivity. For samples that are superconducting, we find strong competition between superconductivity, the antiferromagnetic ordering, and the structural distortion.
190 - Y. Xiao , Y. Su , M. Meven 2009
Among various parent compounds of iron pnictide superconductors, EuFe2As2 stands out due to the presence of both spin density wave of Fe and antiferromagnetic ordering (AFM) of the localized Eu2+ moment. Single crystal neutron diffraction studies hav e been carried out to determine the magnetic structure of this compound and to investigate the coupling of two magnetic sublattices. Long range AFM ordering of Fe and Eu spins was observed below 190 K and 19 K, respectively. The ordering of Fe2+ moments is associated with the wave vector k = (1,0,1) and it takes place at the same temperature as the tetragonal to orthorhombic structural phase transition, which indicates the strong coupling between structural and magnetic components. The ordering of Eu moment is associated with the wave vector k = (0,0,1). While both Fe and Eu spins are aligned along the long a axis as experimentally determined, our studies suggest a weak coupling between the Fe and Eu magnetism.
Single crystal neutron and high-energy x-ray diffraction have identified the phase lines corresponding to transitions between the ambient-pressure tetragonal (T), the antiferromagnetic orthorhombic (O) and the non-magnetic collapsed tetragonal (cT) p hases of CaFe2As2. We find no evidence of additional structures for pressures up to 2.5 GPa (at 300 K). Both the T-cT and O-cT transitions exhibit significant hysteresis effects and we demonstrate that coexistence of the O and cT phases can occur if a non-hydrostatic component of pressure is present. Measurements of the magnetic diffraction peaks show no change in the magnetic structure or ordered moment as a function of pressure in the O phase and we find no evidence of magnetic ordering in the cT phase. Band structure calculations show that the transition results in a strong decrease of the iron 3d density of states at the Fermi energy, consistent with a loss of the magnetic moment.
The compound EuFe(2-x)Co(x)As2 was investigated by means of the 57Fe and 151Eu Moessbauer spectroscopy versus temperature (4.2 - 300 K) for x=0 (parent), x=0.34 - 0.39 (superconductor) and x=0.58 (overdoped). It was found that spin density wave (SDW) is suppressed by Co-substitution, however it survives in the region of superconductivity, but iron spectra exhibit some non-magnetic component in the superconducting region. Europium orders anti-ferromagnetically regardless of the Co concentration with the spin re-orientation from the a-axis in the parent compound toward c-axis with the increasing replacement of iron by cobalt. The re-orientation takes place close to the a-c plane. Some trivalent europium appears in EuFe(2-x)Co(x)As2 versus substitution due to the chemical pressure induced by Co-atoms and it experiences some transferred hyperfine field from Eu2+. Iron experiences some transferred field due to the europium ordering for substituted samples in the SDW and non-magnetic state both, while the transferred field is undetectable in the parent compound. Superconductivity coexists with the 4f-europium magnetic order within the same volume. It seems that superconductivity has some filamentary character in EuFe(2-x)Co(x)As2 and it is confined to the non-magnetic component seen by the iron Moessbauer spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا