ﻻ يوجد ملخص باللغة العربية
We elaborate on the recently proposed Lagrangian parent formulation. In particular, we identify a natural choice of the allowed field configurations ensuring the equivalence of the parent and the starting point Lagrangians. We also analyze the structure of the generalized auxiliary fields employed in the parent formulation and establish the relationship between the parent Lagrangian and the recently proposed Lagrange structure for the unfolded dynamics. As an illustration of the parent formalism a systematic derivation of the frame-like Lagrangian for totally symmetric fields starting from the Fronsdal one is given. We also present a concise and manifestly sp(2)-symmetric form of the off-shell constraints and gauge symmetries for AdS higher spin fields at the nonlinear level.
We study the construction of the intrinsic action for PDEs equipped with the compatible presymplectic structures. In particular, we explicitly demonstrate that the intrinsic action for the standard Einstein-Hilbert gravity is the familiar first-order
Conventional descriptions of higher-spin fermionic gauge fields appear in two varieties: the Aragone-Deser-Vasiliev frame-like formulation and the Fang-Fronsdal metric-like formulation. We review, clarify and elaborate on some essential features of t
Lagrangian descriptions of irreducible and reducible integer higher-spin representations of the Poincare group subject to a Young tableaux $Y[hat{s}_1,hat{s}_2]$ with two columns are constructed within a metric-like formulation in a $d$-dimensional f
Motivated by a recent progress in studying the duality-symmetric models of nonlinear electrodynamics, we revert to the auxiliary tensorial (bispinor) field formulation of the O(2) duality proposed by us in arXiv:hep-th/0110074, arXiv:hep-th/0303192.
It is well-known that a Lagrangian induces a compatible presymplectic form on the equation manifold (stationary surface, understood as a submanifold of the respective jet-space). Given an equation manifold and a compatible presymplectic form therein,